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Abstract

MICROCALORIMETERY AND THE
TRANSITION-EDGE SENSOR

by Mark Anton Lindeman

Chairperson of the Supervisory Committee: Professor Stephen Cramer
Department of Applied Science

Many scientific and industrial applications call for quantum-efficient high-energy-resolution
microcalorimeters for the measurement of x rays.  The applications driving the development
of these detectors involve the measurement of faint sources of x rays in which few photons
reach the detector.  Interesting astrophysical applications for these microcalorimeters
include the measurement of composition and temperatures of stellar atmospheres and
diffuse interstellar plasmas.  Other applications of microcalorimeter technology include x-
ray fluorescence (XRF) measurements of industrial or scientific samples.  We are
attempting to develop microcalorimeters with energy resolutions of several eV because
many sources (such as celestial plasmas) contain combinations of elements producing
emission lines spaced only a few eV apart.  Our microcalorimeters consist of a metal-film
absorber (250 µm ×  250µm ×  3 µm of copper) coupled to a superconducting transition-
edge-sensor (TES) thermometer.  This microcalorimeter demonstrated an energy resolution
of 42 eV (FWHM) at 6 keV, excellent linearity, and showed no evidence of position
dependent response.  The response of our microcalorimeters depends both on the
temperature of the microcalorimeter and on the electrical current conducted through the
TES thermometer.  We present a microcalorimeter model that extends previous
microcalorimeter theory to include additional current dependent effects.  The model makes
predictions about the effects of various forms of noise.  In addition, the model helps us to
understand what measurements are useful for characterizing TES microcalorimeters.  While
the energy resolution we obtained was quite good (twice as good as conventional
semiconductor-based x-ray detectors), the obtained resolution was not as good as expected,
due to excess noise from fluctuations in the TES thermometer.  The energy resolution of
future TES microcalorimeters can be improved by redesigning the calorimeters to minimize
the noise due to these fluctuations.
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LIST OF SYMBOLS

α’ unitless measure of the variation of a thermometer’s resistance with
temperature

β unitless measure of the variation of a thermometer’s resistance with electric
current

γ unitless measure of the variation of a microcalorimeters heat capacity with
temperature

δI small perturbation in the electrical current I due to noise or the absorption of
a particle by a microcalorimeter

δΤ small perturbation in the temperature T of a microcalorimeter due to noise or
the absorption of a particle by a microcalorimeter

∆ energy gap of a superconductor

∆EFWHM full-width-half-max energy resolution

∆T change in temperature of a microcalorimeter caused by the absorption of an
photon

κ thermal conductivity in the thermometer

Φ0 the flux quantum

σ standard deviation or electrical conductivity

ρ resistivity in the thermometer

τd exponential decay time of a pulse

τJ Joule heating time constant of the microcalorimeter model

τel electrical time constant of the microcalorimeter theory (approximately L/R)
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τeff effective thermal time constant of the microcalorimeter model

τetc
2 electrothermal coupling time constant of the microcalorimeter model

τr rise time of a pulse

τth thermal time of a microcalorimeter (approximately C/G)

τVN voltage noise reduction time constant of the microcalorimeter model

ϕ phase of the order parameter Ψ from Ginzburg-Landau theory

Ψ order parameter of Ginzburg-Landau theory

ξ the Ginzburg-Landau coherence length

A cross term of the microcalorimeter model relating temperature fluctuations
to the rate of change of the current in the thermometer

B cross term of the microcalorimeter model relating current fluctuations to the
rate of change in temperature of the microcalorimeter

c specific heat of the transition edge sensor

C heat capacity of the microcalorimeter

Co heat capacity of the microcalorimeter when the microcalorimeter is in
equilibrium

Cabs heat capacity of the

Ctherm heat capacity of the thermometer

D(f) normalization factor in the microcalorimeter model

f frequency

G thermal conductance between the microcalorimeter and the bath

g thermal conductance per unit volume in the TES



vii

Gabs thermal conductance between the absorber and the bath

I electrical current in the thermometer

I0 electrical current in the thermometer when the microcalorimeter is in
equilibrium

Ic critical current of a superconductor

i −1

J electrical current density in the thermometer

kB Boltzmann’s constant

L inductance of the electronic bias circuit and amplifier

N exponent in the power law that describes the cooling power of the thermal
coupling between the microcalorimeter and the bath

Pabs power deposited in the absorber by the absorption of x rays or other
radiation

Pcool cooling power of the thermal coupling from the microcalorimeter to the bath

PJ power due to Joule heating in the thermometer

PVN power fluctuations due to electrical noise in the thermometer

R electrical resistance of the thermometer

R0 electrical resistance of the thermometer when the microcalorimeter is in
equilibrium

Rs resistance of the shunt resistor in the electronic bias circuit

Rth Thevenin equivalent resistance of the electronic bias circuit

S entropy
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t time

T temperature of the microcalorimeter

T0 temperature of the microcalorimeter when the microcalorimeter is at
equilibrium

Tbath the temperature of the cold bath that is coupled to the microcalorimeter

U internal energy of the microcalorimeter

V voltage across the thermometer

V0 voltage across the thermometer when the calorimeter is at equilibrium

Vth Thevenin equivalent voltage bias of the electronic bias circuit

VVN voltage fluctuations due to electronic noise in the thermometer

VRth voltage fluctuations due to electronic noise in the electronic bias circuit
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C h a p t e r  1

INTRODUCTION

1.1  Low temperature energy-dispersive detectors and

microcalorimetry

A typical low-temperature energy-dispersive detector absorbs energy from particles that

impact it.  It converts that energy into excitations that diffuse and thermalize within the

detector, as illustrated in Fig. 1.1.  The presence of additional excitations causes the

electrical resistance or some other measurable property of the detector to change.  These

changes are measured electronically, providing a measurement of the energy of the absorbed

particle.  Eventually, the energy of the event diffuses out of the detector to a large cold bath.

This process returns the detector to equilibrium so that it is ready to measure another

absorption event.

Excitations are disturbances in the material of the detector.  More specifically, they are

modes of the system that are excited above their ground state energies.  Typically,

excitations are modeled as particles that travel inside a material.  Lattice vibrations, which

are modeled as particles called phonons, are an example of one type of excitation.

Excitations are created by thermal energy, and the number of excitations in a material at

equilibrium increases with temperature.  Excitations are also created by athermal events

such as the absorption of a particle as shown in Fig. 1.1.  The typical energy of athermal

excitations can be much larger than that of thermal excitations.
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In any detector, some of the excitations are phonons.  What other kinds of excitations exist

depends upon the material composition of the detector.  In superconductors, part of the

athermal excitations created by the absorption of an energetic particle are quasiparticles.  In

semiconductors, electron-hole pairs are created.  Regardless of the material, these

excitations carry energy and travel through the detector and scatter both elastically and

inelastically.  This process causes a few initial energetic excitations to be converted to many

excitations of lesser energy as time progresses.  Ultimately, the athermal distribution of

excitations is converted to a thermal distribution of excitations through this process.  Thus,

the thermalization process converts the energy collected from a particle into heat.  Heat

from the event eventually leaks out of the detector to a cold bath to which the detector is

thermally coupled, thereby returning the detector to equilibrium.

Bath

Detector

Athermal
excitations

Thermal 
coupling

Particle
absorption

Thermal 
excitations

Particle
absorption

Diffusion of
athermal 
excitation

Thermalization
of
excitations

Return to
equilibrium

Thermal
excitations (c.)(b.) (d.)(a.)

Figure 1.1  The absorption of a particle in a low-temperature energy-dispersive detector.  The internal components of
the detector, such as absorbers and sensors, are not illustrated in this general picture because they are specific to
particular types of detectors.  a.)  The detector is at equilibrium until it absorbs particle.  b.)  The absorption event
creates a number of excitations in the detector.  c.)  Inelastic scattering produces many more thermal excitations.  d.)
The detector eventually cools back to equilibrium, ready to measure another particle.
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Energy-dispersive detectors measure the amount of energy that is collected from particles

and converted to excitations.  If the average energy of a typical excitation is known, a

measurement of the energy of a particle can be obtained by counting the number of athermal

excitations created (before they are converted to phonons).  Detectors that measure the

athermal excitations are called athermal detectors.  Another way to perform the energy

measurement is to let all the excitations be thermalized then measure the heat from

thermalization.  Detectors that function in this way are called thermal detectors.

Microcalorimeters are a type of thermal energy-dispersive detector.  Figure 1.2 illustrates

the thermal couplings between the absorber thermometer and cold bath of a simple

microcalorimeter.  The resistive thermometer is strongly coupled to the absorber and weakly

coupled to the cold bath, which is held at a constant temperature.  The cold bath serves to

keep the temperature of the microcalorimeter near a fixed equilibrium in the absence of

large absorption events.  The electrical resistance of the thermometer, which is a function of

absorber

thermometer

strong coupling

weak coupling

cold bath

Figure 1.2.  A simple microcalorimeter.  The absorber is strongly coupled to the thermometer.  The microcalorimeter is
weakly coupled to the cold bath.  Ideally, the thermometer and absorber are so well coupled that they act like one
thermal element.  Absorption events in the absorber cause the temperature to increase in the microcalorimeter.  The
temperature increase is measured by the thermometer.
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the temperature, is measured electronically.  The electronic bias circuit, which is used to

measure the resistance, drives a current through the thermometer.  Joule heating from this

current usually causes the equilibrium temperature of the thermometer and absorber to be

somewhat higher than the bath temperature.

When a particle is absorbed in a microcalorimeter, its energy is thermalized, which results

in an increase in temperature of the microcalorimeter.  The heat from the event eventually

leaks out of the microcalorimeter to the cold bath, which returns it to equilibrium.  Thus, the

usual response of a microcalorimeter to an absorption event is a pulse, as shown in Fig. 1.3.

The amplitude of the pulse is proportional the energy of the event that is measured.  The rise

time of the thermal pulse is determined by the time it takes energy from the absorption

event to be thermalized in the thermometer.  In the simplest microcalorimeters, the decay

time is given by the time it takes for the thermal energy to leak out of the microcalorimeter

into the cold bath.  However, the Joule heating from the electrical bias on the thermometer

can lengthen or shorten the decay time, as will be described in Chapter 4.

time

te
m

pe
ra

tu
re

           
ris

e
   

   
   

   
   

   
    

  pea

  
k                   decay

Figure 1.3.  The thermal response of a microcalorimeter to the absorption of a particle.  Initially, the microcalorimeter
is at thermal equilibrium.  When a particle is absorbed, its energy is thermalized.  The increasing thermal energy causes
a quick rise in temperature.  The heat flow out of the microcalorimeter into the bath through the weak thermal coupling
increases as the temperature of the microcalorimeter increases.  This causes the temperature to decay back to
equilibrium after the energy of the particle is thermalized.
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1.2  Noise and energy resolution

Typically, the energies of thousands of absorption events are measured during an

experiment.  The amplitudes of the measured pulses are then plotted in a histogram.  An

illustration of such a histogram is shown in Fig. 1.4.  The various peaks in the histogram

correspond to the various energies of the particles being measured.  The detector is

calibrated so that the histogram can be plotted as a function of energy of the particles.  The

widths of the peaks are determined by noise and other non-ideal effects.  Ultimately, the

best obtainable resolution is limited by noise caused by intrinsic fluctuations in these

devices.  The energy resolution is usually reported in terms of the full-width-half-maximum

(FWHM) of the peaks, ∆E .  In calorimeters, the noise causes a Gaussian distribution of

energy measurements.  For Gaussian noise, the full-width-half-maximum value is

approximately 2.35 times the standard deviation σ.  Various sources of noise will be

discussed throughout this thesis.

���

��

E1

E2

Pulse amplitude or energy

N
u
m

b
er

o
f

p
u
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d
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b
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2

Figure 1.4.  An ideal histogram of pulse amplitudes.  The two peaks correspond to particles of two energies, E1 and E2.
The area of the peaks is proportional to the number of counts detected, which depends on the intensity of the source of
the particles and the collection efficiency of the detector at the peak energies.  The grey rectangles represent the number
of counts distributed into each of the amplitude bins.  The noise causes the peaks to be Gaussian curves.
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A reasonable estimate of the energy resolution of a microcalorimeter is obtained by

calculating the magnitude of the fluctuations of the thermal energy in the detector.

Thermodynamic fluctuations result from the random transfer of thermal energy between the

various modes of a system.  These fluctuations (called phonon noise) cause heat to move

back and forth between the detector and the cold bath in a random way.  This causes the

internal energy of the device to fluctuate by an amount,

∆E k T Ctherm B= 2 35 2. (1.1)

(FWHM), where kB  is Boltzman’s constant, T  is the temperature of the device, and C  is

the heat capacity of the device.  The magnitude of the internal energy fluctuations in a

device is a good first estimate of the energy resolution of an energy-dispersive detector.

Equation (1.1) shows that the energy resolution is smaller (and therefore better) for low

temperature devices with small heat capacities.  For this reason, our devices are designed

with small heat capacities and operated at low temperatures (~0.1 K).  It is important to note

that equation (1.2), which is derived in Chapter 3, gives the magnitude of the energy

fluctuations from equilibrium over long time scales.  Over shorter time scales, the internal

energy actually fluctuates less.  Microcalorimeters can take advantage of this fact and obtain

energy resolutions much better than the resolution ∆Etherm .  The optimal resolution of a

microcalorimeter will be derived in Chapter 4.  Athermal detectors often suffer from other

sources of noise associated with the counting of athermal excitations, such as shot noise.

This statistical noise limits the energy resolution of athermal detectors.

1.3  The transition-edge-sensor microcalorimeter

Transition-edge-sensor (TES) microcalorimeters are the main subject of this thesis.  Like all

microcalorimeters, these devices consist of an absorber and a thermometer (the transition-

edge sensor).  The type of absorber used depends on what type of particle the device is
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designed to measure.  My work at Lawrence Livermore National Laboratory has mainly

involved the development of x-ray detectors and gamma-ray detectors.  In our x-ray

detectors, the absorbers are thin films of normal metal, such as copper, which efficiently

absorb soft x rays.  Our gamma ray detectors have absorbers consisting of bulk crystals of

superconductor or dielectric material that are designed to absorb gamma rays, yet have heat

capacities that are not too large.  In both cases, the absorber dominates the heat capacity of

the device, and the absorber is well coupled to the transition-edge-sensor thermometer,

while the entire microcalorimeter is weakly coupled to the cold bath.

Transition-edge sensors (TES) are very sensitive resistive thermometers made of thin films

of superconductor.  An illustration of resistance versus temperature of a superconductor is

shown in Fig. 1.5.  At temperatures sufficiently below the critical temperature, Tc , the

electrical resistance of a superconductor is zero.  At temperatures sufficiently above Tc , the

R

Ta
b

c d

Tc

RN

Figure 1.5.  Resistance versus temperature of a superconducting transition-edge-sensor (TES) thermometer.  At low
temperatures, the TES superconducts, and its electrical resistance is zero (segment ab).  Near the critical temperature
Tc, the device is in the phase transition and the resistance increases sharply with increasing temperature (segment bc).
At higher temperatures, the thermometer is in the normal metal state, and its resistance is the normal resistance RN

(segment cd).  In our devices, the phase transition is typically several mK wide, and the normal resistance RN is roughly
1 Ω.
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superconductor is in the normal metal state.  In our devices, Tc  is typically 100 to 200 mK.

At low temperatures (less than a few Kelvin), the normal resistance of our metal films is

dominated by impurity scattering of electrons.  Impurity scattering is independent of

temperature.  Therefore, the normal resistance is nearly constant just above Tc .  Close to

Tc , the resistance of a superconductor increases rapidly with temperature.  This is the phase

transition between the superconducting and normal metal states.  The TES operated in the

phase transition.  Because the resistance increases rapidly in the transition, the TES is a very

sensitive thermometer.

An example of a transition-edge sensor microcalorimeter is shown in Fig. 1.6.  The figure

shows the layout of a microcalorimeter designed to measure soft x rays with an energy

resolution of a few eV.  In order to obtain such high energy resolution, the heat capacity is

kept small.  Our soft x-ray microcalorimeters have a volume of about 10-14 m3.  These

devices are made of thin metal films that are deposited on a thin membrane.  The

membranes are supported by a silicon substrate.  Depositing the devices on the membranes

keeps them relatively decoupled from the silicon substrate, which functions as the cold bath

of the microcalorimeter.  Both ends of the TES are connected to an electronic circuit that

reads the electrical resistance across the length of the device.  When an x ray is absorbed in

the microcalorimeter, a pulse is measured by the electronic circuit.  The amplitude of the

pulse is proportion al to x-ray energy.

In operation, a bias voltage is applied to the TES thermometer, and the current flowing

through it is measured.  However, the resistance of a TES depends not only on temperature,

but also on the magnitude of the electrical current conducted through the TES.  In

Chapter 4, I present a model that includes such current dependent effects.  In Chapter 7 and

Appendix A, I present experimental methods, based on that model, that can be used to

thoroughly characterize TES microcalorimeters.



9

1.4  Absorption of radiation

The particle collection efficiency of an energy-dispersive detector is determined by the

volume and the material composition of the absorber.  Thick absorbers have higher

absorption efficiency, and absorbers with larger collection area can measure more particles

from faint sources.  However, the volume of the absorber must be kept small to obtain good

energy resolution.  Large absorbers can limit the energy resolution of a detector by

increasing its heat capacity.  Also, large absorbers can limit the energy resolution by

increasing the diffusion time of the excitations in the absorber.  In athermal detectors, the

athermal excitations are typically converted to thermal excitations through inelastic

scattering.  These losses increase with the size of the absorber.  In thermal detectors, long

diffusion times lengthen the measured pulses (by increasing the rise time of the pulses) and

decrease the pulses’ amplitude.  This results in lower signal-to-noise ratio in the pulses.

Because of these effects, the size of the absorber in energy-dispersive detectors is often

TES
film absorber

250 micron

membrane

Silicon wafer

x ray
excitations

Figure 1.6.  An illustration of the layout of a TES based microcalorimeter for the measurement of x rays.  In this
device, a thin-film absorber is connected to a TES thermometer.  In our devices, the absorber is typically 250 microns
by 250 microns in area.  It is typically 0.5 to 3 microns thick, and made of a metal film that does not superconduct at
the operating temperature of the device.  The TES thermometer is much smaller in volume and heat capacity than the
absorber.
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determined by a compromise between collection efficiency and energy resolution.

Collection efficiency is affected by a number of other considerations.  Energetic x rays can

pass though thin films unabsorbed.  For x rays with energies greater than 1 keV, elements

with large atomic numbers are often used as absorbers because they are more efficient

absorbers of x rays[1].  Soft x rays (less than 1 keV) can be easily absorbed by thin films.

However, if air or moisture freezes on to the surface of a detector, it will absorb some of the

soft x rays.  Therefore, the detectors must be operated in a high quality vacuum space.  In

the optical band, it is important that the surface of the absorber be non-reflective, so that the

absorber absorbs rather than reflects radiation.

1.5  Applications of low-temperature energy-dispersive detectors

Low temperature energy-dispersive detectors can be used to measure the energies of a

variety of particles.  These detectors have been used to measure electromagnetic radiation

such as optical light, x rays or gamma rays [2-7].  In such detectors, the energy of individual

photons, E h= ν , is measured.  Alternatively, the kinetic energies, E mv= 2 2/ , of massive

particles that impact such a detector can also be measured [8].

Low-temperature energy-dispersive detectors based on transition-edge sensor technology

are being developed for a number of applications.  They are being developed as broadband

x-ray detectors by our group [9] (the Labov cryodetector group at Lawrence Livermore

National Laboratory) and others [3,10,11].  Applications of these x ray detectors include

imaging arrays for x-ray astronomy, such as the NASA Constellation-X project (see web

page at http://constellation.gsfc.nasa.gov/).  These detectors also have applications for x-ray

fluorescence (XRF) measurements of biological or industrial samples at a synchrotron

radiation laboratory, similar to what our group has demonstrated using our athermal

detectors [12].  Our group is also developing TES microcalorimeters for gamma-ray



11

detection [7]; these sensitive gamma ray detectors can be used to detect and analyze the

composition of nuclear materials [13].  The LLNL and NIST groups have incorporated

energy-dispersive detectors into matrix-assisted-laser-desorption-ionization time-of-flight

(MALDI-TOF) mass spectrometers [8,14,15].  This technology can accurately measure the

masses of large biomolecures, such as proteins or snippets of DNA.

Others have been developing calorimeters using transition-edge sensors with large

absorbers for the detection of weakly interacting massive particles (WIMPs) a hypothetical

form of dark matter that may comprise the vast majority of the mass of the universe [16,17].

1.6  Current state of research

Excellent progress is being made toward the development of cryogenic energy-dispersive

detectors with high energy resolution.  In 1991, the collaboration between NASA Goddard

Space Flight Center and Wisconsin University, demonstrated a resolution of 7.3 eV 6 keV,

using microcalorimeters composed of HgTe absorbers and doped silicon thermisters [18].

In 1996, our group demonstrated 29 eV FWHM resolution at 6 keV using SIS tunnel

junctions, a type of athermal detector [19].  These SIS detectors were shown to be able to

measure at very high count rates.  A resolution of 13 eV at 284eV was measured at 20,000

counts per second [20].  In 1997, the NIST Boulder group demonstrated a resolution of 7.2

eV at 6 keV using TES based microcalorimeters [3].  In 1999, the Milano group

demonstrated 5 eV resolution using neutron transmutation doped (NTD) Ge thermistors [6].

Energy-dispersive, imaging detectors are being developed as well.  One scheme for doing

this involves arraying large numbers of energy dispersive detectors, where each detector

functions as an image pixel [21-23].  Researchers at NIST have been developing

multiplexing technology for arrays of TES based calorimeters [24].  Another scheme

involves coupling one absorber to several detectors (thermal or athermal).  In this scheme,



12

the location of an absorption event can be found by comparing the measurements of the

several detectors to each other [25,26].
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C h a p t e r  2

THE SUPERCONDUCTOR TO NORMAL
METAL PHASE TRANSITION

2.1  Introduction to the phase transition

Our transition-edge sensors (TES) are thin metal films that are held in the phase transition

between the superconducting and normal-metal states.  To understand how

microcalorimeters based on TES technology function, it is necessary to understand some of

the physics of the normal metal state, the superconducting state, and the phase transition.  In

this chapter, we review several models from solid state physics that we use to explain the

dynamics and noise of TES microcalorimeters.

2.2  The normal-metal state: resistance, noise, and heat capacity

2.2.1  Electrical resistance in normal metal films

In normal metals, conduction electrons move freely throughout the metal.  When a voltage

bias V is applied across a normal metal wire, a gradient in the Coulomb potential forms

within the wire.  The potential gradient accelerates conduction electrons, causing the

electrons to flow to positive Coulomb potential.  Individual electrons typically travel many

atomic distances until they are inelasticly scattered by imperfections in the metal’s

crystalline lattice, by impurities in the metal, or by lattice vibrations (phonons).  All these

scattering processes involve an exchange of energy between the electric current and thermal

modes of the metal.  Energy is transferred back and forth in a random fashion between the
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kinetic energies of the individual electrons and thermal phonons in the metal.  If there is a

net flow of current in any direction, then on average more energy will be transferred from

the motion of the electrons to the thermal vibrations of the crystal than visa versa.  Thus,

energy from the current flow is irreversibly converted to heat.

Power is required to sustain electrical current flow through normal metal conductors.  When

a current of magnitude I  flows through a normal metal wire, there is a finite voltage drop V

in the direction of current flow.  The electrical resistance is R V I= / .  Energy is dissipated

with a power P I R= 2 .  In normal metals, resistance does not vary with the applied voltage

or current.  The resistance depends on the material composition of the conductor, on its

shape, and on its temperature.

At room temperature, the dominant effect causing resistance of our metal films is inelastic

scattering of electrons with thermal phonons.  The number and energy of phonons in a metal

are a temperature dependent quantities.  At lower temperatures, fewer thermal phonons are

present in the metal.  As the temperature of a metal is decreased, the electronic resistance

due to thermal electron-phonon scattering decreases.  In our low-temperature experiments

(which are conducted at temperatures ranging from 50 mK to 2 K), the electrical resistance

of our metal films is primarily caused by impurity scattering.  Impurity scattering of

electrons is a temperature independent process.  Consequently, the resistance of our metal

films is temperature independent in our low temperature experiments.

2.2.2  Fluctuation, dissipation, and Johnson noise in normal metals

The electrical resistance of a normal metal is caused by the coupling of the electron’s

motion to the energy of thermal modes of the resistor.  When an electron scatters

inelastically, energy is transferred from the electron to thermal modes of the system or visa

versa.  The collective effect of many such interactions within the metal is the random

exchange of energy between the motion of the electrons (the electric current) and the
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thermal modes (the thermal reservoir).  A schematic of this process is shown in Fig 2.1.  If

there is no net electric current flow in the metal and the electrons are at the same

temperature as the thermal modes then energy is exchanged back and forth equally between

the motions of electrons and the thermal modes.  Consequently, the energy exchanged

between the current and the thermal reservoir averages to zero.  The effect of the coupling

between the electrons and the thermal reservoir is to cause fluctuation in the motions of the

electrons.  These fluctuations are a form of electronic noise in the electric current or the

voltage in the metal.

If a metal is biased so that an electric current is conducted through it, then the metal’s

electrons have a net nonzero average momentum.  In this case, random inelastic scattering

events in the metal will on average transfer more energy from the motion of the electrons to

the thermal modes than visa versa.  This occurs because entropy is increased by this

process: it is more probable for the directed motion of the electric current to be scattered

into random thermal motions than it is for the random thermal motions to be scattered into

Impurity scattering
site

electron

phonon

phonon

impurity
scattering event

Thermal scattering
event

electron

Wire

Electric current

Figure 2.1  Electron scattering in a wire.  Electrons are accelerated by a voltage V applied across the wire.  Electrons
are scattered by impurities or thermal phonons in the metal.  The scattering exchanges energy between the kinetic
energies of the electrons to thermal vibrations (phonons) in the metal.  These scattering events cause fluctuations in the
electric current that are responsible for the electrical resistance.  The net effect of the scattering is to convert the
directed motion of the electric current into random thermal motion.
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the directed motion of the electric current.  In this case, the fluctuations in the electric

current due to inelastic scattering of the electrons have two effects: they are a source of

electronic noise and they result in a dissipation of energy from the electric current.  Because

the same processes cause both fluctuations (noise) and dissipation (electrical resistance),

there is fundamental relationship between the electronic noise and the electrical resistance:

V f k TRB( )
2

4= . (2.1)

where kB  is Boltzmann’s constant, T is the temperature of the resistor, and R is the

resistance.  The brackets on the left of equation (2.1) indicate that the equation gives the

expectation value of the absolute value of the noise squared.  The expectation value of the

noise V f( )  is zero.  This noise is called Johnson noise after the researcher who first

characterized it [1].  A derivation based on simple thermodynamic arguments was presented

by Nyquist [2].  A more general treatment of such noise is described by the fluctuation-

dissipation theorem [3].  A review of this subject is presented by Reif [4].  In computing the

effects of Johnson noise in an electrical circuit, the V(f) noise source is placed in series with

the associated resistor.

The scattering events that cause electrical resistance occur at random times.  To a very good

approximation, the time of any scattering event can be regarded as being uncorrelated to the

times of other scattering events.  Consequently, Johnson noise, which results from these

fluctuations, is frequency independent.  (In other words, it is white noise.)  The temperature

of the thermal reservoir affects the likelihood of energy being scattered from the reservoir to

electric current energy.  Hence, Johnson noise is temperature dependent.

Johnson noise is the least noise that a resistance R due to uncorrelated fluctuations at

temperature T can have.  It occurs in the limit that a large number of uncorrelated
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fluctuations (such as inelastic scattering events) are responsible for dissipation.  If electrical

resistance R is caused by few uncorrelated fluctuations (such as tunneling of electrons

across a tunnel barrier or the motion of magnet flux in a superconductor), then the noise will

be larger than the Johnson noise limit.  Note that the Johnson noise limit depends on the

resistance R, not on the dynamic resistance, dV dI/ .

We use TES thermometers, which are electrically resistive, to measure temperature changes

in our microcalorimeters.  Equation (2.1) is used to calculate a lower limit of the electronic

noise of due to TES thermometer with resistance R at temperature T.

2.2.3  Electronic excitations, heat capacity, and thermal conductivity of normal metals

The absorbers of our x-ray microcalorimeters consist of thin metal films.  The heat capacity

and thermal conductivity of the absorbers significantly affect the performance of our

microcalorimeters.  Hence, we briefly describe thermal properties of metals.

The electrons in a metal form a Fermi gas.  An illustration of the occupation of energy

levels of a Fermi gas is illustrated in Fig. 2.2.  If the metal is at low temperature, then the

electronic states with energies less than the Fermi energy are nearly completely occupied by

electrons.  The energy levels above the Fermi energy are mostly unoccupied.  Only the

energy levels whose occupation changes significantly with temperature contribute to the

heat capacity.

Most of the electrons that are excited at temperature T  by thermal energy in the metal lie

within k TB  of the Fermi energy, ε f .  These are the electrons that contribute significantly

to the heat capacity.  The fraction of electrons in the metal that are excited is approximately

k T FB / ε .  These electrons are typically excited from their ground states with an energy of

approximately k TB .  If we multiply the number of electrons in the metal N by the fraction
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of electrons that are excited and by the energy of a typical thermal excitation, we find the

thermal energy of the electrons is:

U N
k T

k T
F

el
B

B≈
ε

. (2.2)

The heat capacity of the electrons is C dU dTel el= / .  From equation (2.2), we find that

C
Nk T

F
el

B≈ 2 2

ε
. (2.3)

Thus, we find that the electronic heat capacity of a metal is proportional to temperature [5].

The fact that the heat capacity is proportional to temperature will be used later in calculating

the effects of the heat capacity on microcalorimeter performance.
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Figure 2.2  Distribution of electrons in a Fermi gas of electrons.  The energy states near the Fermi are partially
occupied by electrons.  These energy states are responsible for the conduction and heat capacity of metals at low
temperature.
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Pure metals are good electrical conductors compared to non-metals because the conduction

electrons in metals are free to travel throughout the metal.  Because the conduction electrons

carry heat as well as electric charge, metals are also good thermal conductors.  At

temperature T, the thermal conductivity κ is proportional to electrical conductivity σ  as

described by the Wiedemann-Franz Law:

κ σ=LT , (2.4)

where L is the Lorenz number.  The theoretical value of the Lorenz number is

L = 2.4 10  W / K-8 2× Ω .  The theoretical value of the Lorenz number is in good agreement

with measurements of the Lorentz number of elemental metals at room temperature.

However, the real value of the Lorenz number can be as much as an order of magnitude

smaller for some metals at low temperatures[5].  In the next chapter, we shall use equation

(2.4) to calculate the thermal stability of our TES thermometers.

Thermal vibrations of the metal atoms (phonons) also contribute to the heat capacity and

thermal conductivity of a metal.  However, the phonon contribution is small compared to

the electronic contribution at low temperatures.  Therefore, the heat capacity and thermal

conductivity of our metal films are approximated by equation (2.3) and equation (2.4).

2.3  The superconducting state

2.3.1  Introduction to superconductivity

As the temperature is decreased from room temperature to temperatures near absolute zero,

most elemental metals, many metal alloys, and some other materials undergo a phase

transition from the normal state to the superconducting state.  The phase transition occurs at

the critical temperature Tc.  The material superconducts at temperatures less than Tc.  The

critical temperature depends on the composition of the material.
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When a metal is cooled through the critical temperature, a number of the metal's properties

change as the metal undergoes the phase transition from the normal metal state to the

superconducting state.  In the superconducting state, materials have no (direct current)

electrical resistance.  Bulk superconductors expel magnetic fields.  At temperatures far

below the critical temperature Tc, the electrons in a superconductor contribute very little to

the heat capacity and thermal conductivity of the material.

Kamerlingh Onnes observed zero electrical resistance (to direct current) in several

elemental metals at low temperatures, leading to the discovery of the superconducting state

[6].  Zero electrical resistance is surprising in the context of the previous discussion of

dissipation and noise in normal metals.  In light of the previous discussion, it is quite

remarkable that inelastic scattering of electrons does not cause dissipation in

superconducting metals as it does in the normal state.  Lack of electrical resistance in the

superconducting state will be described in more detail below.

2.3.2 The Meissner effect

Meissner and Ochfield found that magnetic fields are excluded from superconductors.  They

found that if magnetic field is applied to bulk normal state material and the material is then

cooled into the superconducting state, magnetic fields are expelled as the material goes into

the superconducting state.  This is process, called the Meissner effect, is illustrated in

Fig 2.3.  In actuality, magnetic field is not completely expelled from superconductors.

Generally, magnetic fields are exponentially screened with depth into a superconductor, but

some superconductors (Type II) allow lines of magnetic flux to penetrate through their bulk.

This case will be discussed in Section 2.4.3.

A material superconducts at temperatures less than the critical temperature because the free

energy of the superconducting state is lower than the free energy of the normal state.

(Materials occupy the phase that minimizes their free energy because it is
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thermodynamically favorable to do so.)  However, additional energy is required to occupy

the superconducting phase when a magnetic field is applied.  The additional energy is

required to expel the magnetic field from the superconductor.  For example, the energy of

the magnetic field in Fig. 2.3b is higher than the energy of the magnetic field in Fig. 2.3a.  If

a large enough magnetic field is applied to a superconductor, then the total free energy

associated with a material occupying the superconducting state may be larger than the free

energy of the normal state.  Therefore, a material will not superconduct if such a large

magnetic field is applied.

Generally, the free energy of the superconducting state decreases relative to the free energy

of the normal state as temperature decreases.  When a magnetic field is applied, the free

B B

a.) Normal state b.) Superconducting state

Figure 2.3  The Meissner effect.  A static magnetic field permeates a material in the normal state.  The magnetic field is
expelled when the material is cooled into the superconducting state.  Magnetic fields suppress superconductivity
because energy is required to expel the flux.
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energy associated with superconducting state is increased.  In the presence of a magnetic

field, the material has to be cooled to a lower temperature in order for the superconducting

state to have less free energy than the normal state.  Consequently, magnetic fields have the

effect of lowering the temperature at which the superconducting to normal-metal phase

transition occurs in a superconductor.

For any superconductor at a particular temperature T, there is a critical magnetic field

H Tc ( ) .  If a magnetic field larger than the critical field is applied to the superconductor,

then the superconductor will not superconduct.  Instead it will have a finite resistance.  An

illustration of the temperature dependence of the critical field H Tc ( )  is shown in Fig. 2.4.

The critical field of a superconductor is approximated by

H T H T Tc c c( ) ( )( - ( /≈ 0 1 2) ) . (2.4)

Superconductors are affected by externally applied magnetic fields and by magnetic fields

from electric current flowing through the superconductor.  For any superconducting wire

with temperature T, there is a critical electric current I Tc ( ) .  If the current conducted

through the wire exceeds the critical current I Tc ( )  then the magnetic field in the wire will

exceed the critical field H Tc ( )  and the wire will be resistive.  The critical current of a wire

depends both on the critical field H Tc ( )  and on the shape of the superconducting wire

(because the induced magnetic field depends on the current distribution in the wire).  The

performance of a TES thermometer is greatly affected by the temperature dependence and

magnitude of the critical current.

2.3.3  BCS theory: energy gap, heat capacity, and thermal conductivity

The theory of Bardeen, Cooper, and Schrieffer (BCS) provides the basic explanation of

superconductivity.  In this theory of the superconducting state, it is postulated that
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interactions between the electrons and the atomic lattice of a superconductor have the net

effect of creating an attractive interaction between the electrons that participate in

superconductivity.

In the formulation of BCS theory, Cooper postulated that the attractive potential binds

together pairs of electrons with opposite momentum and spin, called Cooper pairs [7].  He

showed that the Fermi gas of electrons in a normal state metal is unstable against the

formation of a Cooper pair so long as there exists an attractive potential between the paired

electrons (even if the attractive force is very small).  When a metal is cooled into the

superconducting state, electrons that comprise the Fermi electron gas of the normal-metal

state form many Cooper pairs.  Formation of the Cooper pairs alters the state of the electron

gas and lowers its total energy.  Cooper pairs continue to form until the state of the electron

gas is so altered from the metallic state that formation of additional Cooper pairs no longer

lowers the energy of the whole system.  Note that electrons are continually exchanged

among the Cooper pairs and other unpaired electrons.

H Tc( )

T

Tc

Figure 2.4  The temperature dependence of the critical magnetic field Hc.  The critical field is largest at temperature
T=0.  The critical field decreases as the temperature T approaches the critical temperature Tc.  The material is in the
superconducting state when the applied magnetic field is less that Hc.  In thin films of superconductor,
superconductivity does not completely vanish at the critical temperature Tc of the bulk material.  Instead, a small
critical field persists up to a somewhat higher temperature as illustrated in the figure.
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The electrons that are bound in Cooper pairs collectively form the BCS ground state.  The

BCS ground state is represented by a quantum wave function.  The BCS wave function

describes the likelihoods of observing various configurations of electrons in the

superconductor.  Of all the possible quantum states of superconductor, the ground state is

the one with the minimum energy.  It is the state that a superconductor would occupy if it

were at a temperature of absolute zero.  Disturbances within the superconductor due to

thermal energy, the absorption of photons, or other energy sources can change the

configuration of the electrons by creating excitations (so that the electrons are not in the

ground state).  These excitations are modeled as fictitious particles called quasiparticles.  (In

actuality, a quasiparticle is a collective mode involving many electrons.)  The quasiparticles

are fermions that have energy and propagate through the superconductor.  A minimum

energy per quasiparticle, called the energy gap, is required to create quasiparticles from the

ground state.  According to BCS theory, the energy gap ∆ at a temperature of absolute zero

Tc is given by

∆(0) .= 1 76k TB c . (2.5)

when there is no magnetic field applied to the superconductor.  (In our TES thermometers,

the energy gap ∆(0) is roughly 10 µeV.)  The energy gap ∆(Τ) decreases to zero as the

temperature T of the superconductor approaches the phase transition temperature.

The Cooper pairs of the superconducting state are modeled as bosons.  In the

superconducting ground state all the Cooper pairs exist in the lowest energy state of the

Bose gas of Cooper pairs.  A pair of quasiparticles is created when an energetic event breaks

up a single Cooper pair.  An illustration of the density of quasiparticle states and an

excitation event is shown Fig. 2.5.  The probability of thermal energy creating an excitation

that occupies an energy level with energy E is described by the Fermi function,
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. (2.6)

The minimum energy E of an excitation is the energy of the gap ∆.  At low temperatures,

the characteristic thermal energy kBT is small compared to the energy gap ∆.  Consequently,

the number quasiparticle excitations decreases exponentially with decreasing temperature.
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Figure 2.5  Quasiparticle excitations from the superconductor ground state.  Quasiparticle excitations are created in
pairs.  The energy gap ∆ is the minium energy of an excitation.  In superconductors at temperatures far below the
critical temperature Tc, few excitations are created because the thermal energy kBT is far less than the energy gap ∆.  At
low temperatures, the electronic heat capacity and thermal conductivity of a superconductor are much smaller than they
are in metals in the normal state because there are few quasiparticle excitations.
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At low temperature, the superconducting state has small electronic heat capacity and small

thermal conductivity compared to the normal metal state because there are relatively few

electronic excitations in the superconducting state.  The heat capacity of superconductors at

temperatures far below Tc is dominated by the heat capacity of the phonon gas in the

material.  This phonon heat capacity is described by the Debye model:

C Nk
T

ph B
D

= 







12

5

4 3
π

θ
, (2.7)

where θD  is the Debye temperature[5].

In our experiments, the thermal properties of superconductors are often used to our

advantage.  For example, we sometimes use an absorber made of a superconducting metal

in our gamma-ray detectors to minimize the heat capacity of the calorimeters.  In addition,

superconducting electrical wires are used in our refrigerators because they have very low

thermal conductivity.

2.3.4  Electrodynamics of BCS superconductors and the London equations

The BCS ground state, which is a quantum phase coherent state, results from the collective

interactions of electrons with the atomic lattice.  The quantum mechanical properties of the

ground state are responsible for the Meissner effect and the lack of electrical resistance in

superconductors.

Perturbation theory is used to compute the effects of electromagnetic fields on the BCS

ground state.  The response of a superconductor to low frequency electromagnetic fields can

be computed from the perturbed ground state.  From this calculation, the London equations

are obtained [8].  The London equations are:
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E J= ∂
∂

µ λ
t

L( )0     and (2.8)

B J= ∇ × ( )µ λ0
2

L , (2.9)

where λL is the London penetration depth, J is the supercurrent density, E is the electric

field and B is the magnetic field.  Equation (2.8) indicates that electric fields cause the

supercurrent to increase until the resulting movement of charge eliminates the electric field

in the superconductor.  This implies that the current J flows without dissipation of energy.

By taking the curl of both sides of equation (2.9) and using the expression∇ × =B Jµ0

(which is a form of Ampere’s Law) to make a substitution, we find that

∇ =2 2B B / λL . (2.10)

Equation (2.10) implies that the magnetic field is screened exponentially with the

penetration depth λL  into a superconductor.  The London penetration depth is typically a

very small length.  For example, the penetration depth is 16 nm in Al [5].  Consequently,

the magnetic field is strongly screened from the interior superconductors (which is the

Meissner effect).

2.4  The superconductor-to-normal-state phase transition

When a TES thermometer is in the phase transition, magnetic fields and thermal

fluctuations cause the superconducting state to vary as a function of position in the

superconductor.  For example, regions of normal metal may lie next to regions of

superconducting metal.  The BCS theory, as originally formulated, is not equipped to handle

such variation.  Such situations are better described using the theory of Ginzburg and

Landau.
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2.4.1  The Ginzburg-Landau theory

The Ginzburg Landau (GL) theory describes spatial variations in superconducting state

associated with spatial variation of the energy gap ∆.  The theory describes the

superconducting ground state in terms the order parameter ψ .  The order parameter is a

complex valued scalar function of spatial location x in the superconductor.

ψ ψ ϕ( ) ( ) ( )x x x= ei (2.11)

The magnitude ψ ( )x
2

 is the local density of superconducting electrons and is proportional

to the energy gap ∆.  The order parameter has a phase ϕ  that describes the quantum phase

the superconducting state and is also related to the supercurrent density J.  Because the

superconducting state is a coherent state with quantum phase ϕ , superconductors manifest

many quantum mechanical properties, such as quantum interference and quantization of

magnetic flux.

A time dependent change in the phase difference ∆ϕ  between two ends of a

superconductor is associated with a voltage across the two ends.  This property of

superconductors is described by the Josephson relation:

d

dt

eV∆ϕ = 2
. (2.12)

The GL coherence length ξ  is defined as the smallest distance scale over which the order

parameter ψ  can very.  The phase ϕ , the GL coherence length ξ , and Josephson relation

of equation (2.12) are used to describe phenomena occurring in our TES thermometers.
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2.4.2  Flux quantization

The interaction between superconductors and magnetic fields that permeate them must be

first understood before attempting to describe the physics of TES thermometers in the phase

transition.  As an example, we consider the case of magnetic flux passing through a hole in

a superconducting ring as shown in Fig. 2.6.  The magnetic flux penetrating the ring is

nΦ0 , where Φ0 is the flux quantum:

Φ0
152 2 07 10= = × −h e/ . Wb . (2.13)

The phase ϕ  of the superconductor is rotated by 2nπ as measured around the ring.  The

order parameter ψ , which depends on the phase ϕ  modulus 2π, must be a single valued

function.  Therefore n must be an integer.  Consequently, the flux passing through the

superconducting ring must be an integer multiple of the flux quantum Φ0 .  This example is

important because magnetic flux can penetrate our TES thermometers, resulting in a similar

situation.

2.4.3  Abrikosov flux vortices

Abrikosov [9] analyzed GL theory, to show that there are really two classes of

superconductors.  One class expels magnetic flux (type I) as illustrated in Fig. 2.3.  In type I

superconductors, the free energy is minimized by having the minimum possible surface area

of the superconducting state to normal state boundary.  The second class of superconductors

(type II) allows tubes of magnetic flux to penetrate the superconductor as illustrated in

Fig. 2.7.  The magnetic flux is quantified just as it is in the ring of Fig. 2.6.  The free energy

is minimized when magnetic flux passes through flux tubes in the superconductor each

containing one flux quantum.  In the center of each flux tube, there is a region with a

diameter of the GL coherence length ξ  that is approximately in the normal state.  The flux

tubes are called Abrikosov vortices.
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The material composition of a bulk superconductor determines weather it is type I or type II.

However, films of superconductor that are much thinner than the GL coherence length ξ

always demonstrate type II behavior.  Such is the case for our TES thermometers, which are

composed of thin metal films.  Therefore, Abrikosov vortices occur in our TES

thermometers.

2.4.4  Vortex motion and dissipation

The flux vortices in a superconductor are held in place by pinning sites in the

superconductor.  Pinning is caused by imperfections in the superconducting material.  The

presence of a supercurrent density J causes the Abrikosov vortices to move in a direction

perpendicular to the electric current J.  The vortices move only if the Lorentz force between

the supercurrent and the magnetic field of the vortex exceeds the pinning force.

Vortex motion in a superconducting wire causes a voltage potential V to form across the

wire.  This occurs because the motion of flux vortices in a direction perpendicular to the

B

+,n+-

. /01=n

. /=0,2n

. /01=3n

. /=n

Figure 2.6  Magnetic flux passing through a superconducting ring.  The total magnetic flux threading the ring must be a
multiple of the flux quantum Φ0 so that the order parameter Ψ of the superconductor is single valued.



34

supercurrent causes the phase ϕ1 to change on one side of the wire relative to the phase ϕ2

of the other side.  The rate of change of the phase difference ∆ϕ ϕ ϕ= −2 1  determines the

voltage across the wire, as described by equation (2.12).  For example the lateral motion of

a single vortex from on side of a wire to the other side causes the relative phase ∆ϕ  to

change by π .

Vortex motion also causes dissipation: if the supercurrent I through a superconducting wire

induces vortex motion that causes a voltage V across the wire, then the power dissipated is

P IV= .  This mechanism is responsible for dissipation in our TES thermometers when

they are biased in the transition between the superconducting and normal states.  Notice that

the mechanism of dissipation in the superconducting state is very different from the

B

Type II
superconductor

Abrikosov
vortex

Figure 2.7  Abrikosov vortices in a laminar superconductor as shown in cross section.  Superconductivity is suppressed
(indicated by light grey) where the magnetic field permeates the superconductor.
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mechanism in the normal state.

2.4.5  Fluctuations and dissipation in the phase transition

The appearance of resistance in a TES as it is warmed from the superconducting state into

the phase transition is associated with thermal fluctuations in the superconducting state.  At

temperatures less than several mK below the critical temperature Tc, these fluctuations

occur so rarely that they not observable.  In the absence of such fluctuations, the

superconductor has zero resistance.  The energy required to create fluctuations in the

superconducting state decreases as the temperature is increased.  As the temperature of a

superconductor is increased to temperatures near Tc, the rate of fluctuations in the

superconducting state increases sharply[8].

These fluctuations are very different from quasiparticle excitations.  Thermal fluctuations in

the superconducting state cause the phase of one side of the TES to slip with respect to the

other side.  For example, thermal fluctuations in a TES can lead to the creation of flux

vortices.  When a current I is conducted through the TES, the motion of the flux vortices

causes phase slipping and dissipation.  Hence the resulting phase slips generate a voltage V

across the TES.  If thermal fluctuations create uncorrelated phase slips of magnitude ∆ϕ

then the associated voltage noise is

V VVN (0) = φ ϕ
π

0∆
(2.14)

[10].  In general, the noise of uncorrelated phase slips is at least as large as the Johnson

noise limit.  The actual magnitude of the phase slips depends on the vortex dynamics in the

superconductor.  If each fluctuation creates a vortex that crosses the width of the

superconductor, then ∆ϕ π= .  If the vortices are bound large bundles, then each flux

bundle may cause a much larger phase slip.  In the other hand, the vortices only partly cross
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the superconductor before being annihilated by a vortex of opposite magnetic field, then

each phase slip event will be less than π .

The energy gap ∆(Τ) becomes very small as the temperature T of a superconductor is

increased to the critical temperature Tc.  When the energy gap is small compared to k TB ,

many thermal quasiparticle excitations occur.  Consequently, the electronic heat capacity

and thermal conductivity become much larger as the temperature of a superconductor

approaches Tc.  In fact, the heat capacity of a superconductor at temperature Tc equals 2.43

times the heat capacity of the normal state electrons at the same temperature according to

BCS theory [8].  At temperatures slightly above Tc, the heat capacity of superconductor

decreases to the normal state heat capacity.  We often estimate the heat capacity and thermal

conductivity of our TES thermometers in the phase transition by using the calculated values

of the heat capacity and thermal conductivity in the normal metal state, multiplied by the

factor 2.43.
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C h a p t e r  3

THERMAL PHYSICS AND THE
TRANSITION-EDGE-SENSOR

CALORIMETER

3.1  Introduction to the transition-edge-sensor

A transition-edge sensor (TES) is a very sensitive thermometer.  Typically, the TES

thermometer consists a small rectangular thin film of superconductor.  (The typical

dimensions of TES thermometers in our x-ray microcalorimeters are 100 µm × 200 µm

× 0.1 µm).  A bilayer of two metals (copper and aluminum) is used to form our TES

thermometers.  The total thickness of the film is less than the GL coherence length.  Such

thin films behave much as if they are made of one superconductor with properties that

depend on the two metal film thicknesses.  The thicknesses of the films determine the

critical temperature Tc of the superconductor to normal metal phase transition.

Our TES thermometers are fabricated on top of silicon substrates.  The silicon substrate acts

as a large thermal reservoir, or cold bath.  In our experiments, the substrates are cooled to a

temperature Tbath  below the critical temperature Tc of the TES so that the TES

superconducts.  A bias voltage is applied to the TES.  The resulting electric current

increases until the critical current Ic of the superconductor is exceeded and the TES

becomes resistive.  A small bias voltage is chosen so that the resulting Joule heating (which

warms the TES) and magnetic fields (which lower the temperature of the phase transition)
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do not drive the TES completely into the normal metal state.  The TES is held in the phase

transition between the superconducting and normal metal states.

In the phase transition, the resistance R of the TES increases rapidly with increasing

temperature T of the TES due to fluctuation phenomena as described in Chapter 2.  A plot

of resistance versus temperature is shown in Fig. 1.5.  In the transition, the TES is a very

sensitive thermometer.  We use TES thermometers in our x-ray microcalorimeters to

measure photon absorption events as described in Section 1.3.  In this chapter, we shall

review thermal physics relating to stable, low noise operation of TES microcalorimeters.

3.2  The coupling of the TES to a cold bath

In abutting bulk materials, the thermal coupling between the phonons of the different

materials is described by the acoustic mismatch between the materials.  In materials with

differing acoustic impedances, acoustic waves (phonons) are reflected at the boundary

between two materials.  The associated thermal conductance across a boundary between

two materials is called the Kapitza coupling.

However, our TES thermometers are so thin that they can not be regarded as bulk materials.

The thickness of a TES is smaller than the typical wavelength of thermal phonons at 100

mK [1].  Consequently, the phonons are not efficiently reflected at the boundary between

the TES and the silicon substrate on which it rests.  Therefore, phonons are readily

exchanged between such a thin film the substrate.  In our microcalorimeter design shown in

Fig. 1.6, part of our TES thermometers lies on the substrate.  The phonons in that part of the

device are well coupled to the thermal reservoir at temperature Tbath .  Hence the Kapitza

coupling is large for such thin films [1].
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At the temperatures we operate our devices, the coupling between the electrons and the

phonons in a TES is relatively weak compared to the Kapitza coupling.  The electron-

phonon coupling in copper has been measured.  The coupling power is described by the

equation

( )P T Te p
N N

− = −ΣΩ bath , (3.1)

where N=5, Σ ≅ ×1 10 WK m9 -5 3 , T is the temperature of the electrons, Tbath is

temperature of the phonons, and Ω  is the volume in which the electron phonon coupling

occurs [1-3].  The thermal coupling is G P T≡ ∂ ∂/ .  In our devices, the volume Ω is the

volume of the TES that lies directly on the silicon substrate.  The electron phonon coupling

determines the coupling between the microcalorimeter and the cold bath.

3.3  Constraints on the normal-state resistance of TES

thermometers

In operation, electric current I flows through a TES thermometer.  Joule heating from the

electric current warms the TES and holds the TES in the phase transition.  However, the

Joule heating from the current can cause spatial instability in the TES.

As an example, we shall examine the effects of Joule heating in a TES in which the width

and thickness of the TES are small compared to the GL coherence length ξ .  In this case,

the TES may be regarded as being a one dimensional wire.  In this example, the thermal

coupling g (per volume element) to the bath and the specific heat capacity c are constant

with respect to position in the wire x and temperature T(x) of the TES.  The thermal

conductivity κ of the TES is also constant.  The temperature of the substrate Tbath is held

constant at a temperature less than the critical temperature Tc of the TES.  A constant
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current density J is conducted through TES.  The current causes Joule heating that elevates

the temperature T(x) of TES above the bath temperature Tbath.  The electrical resistivity ρ is

a function of the temperature T.  (The current dependence of the resistivity ρ is neglected

because the current density J is constant.)  The differential equation that describes the rate

of change of the temperature in the TES with time t is

c
dT

dt
g T T J T x

T

x
= − − + −bath bath( ) ( ( ))2

2

2
ρ κ ∂

∂
. (3.2)

The first term on the right side of equation (3.2) describes the cooling power in the

substrate.  The second term describes the Joule heating power within the TES.  The third

term describes thermal conduction within the TES.

At equilibrium, the temperature T(x) is constant with respect to position x and equal to T0 .

The equilibrium electrical resistance is ρ0 .  For small perturbations in temperature T from

equilibrium temperature T0 , the resistance can be approximated by

∆ ∆ ∆ρ ∂ρ
∂

ρ α( ) ( )
( )

,

x
T

T x
T x

TI T

≅ = ′
0

0
0

, (3.3)

where ∆ρ ρ ρ( ) ( )x x≡ − 0 , ∆T x T x T( ) ( )≡ − 0 , and ′ ≡α ρ ∂ρ ∂( / ) /T T0 0 .  Equation (3.2)

then reduces to the linear differential equation:

d

dt
T

c x
T

e
∆ ∆= +











1 2

2τ
κ ∂

∂ff
, (3.4)

where the effective thermal time constant is
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1 2
0

0τ
ρ α

eff
≡ − + ′g

c

J

cT
. (3.5)

When the TES is operated with a large current density J, the Joule heating dominates over

the cooling to the bath.  Therefore, we make the approximation that

1 2
0

0τ
ρ α

eff
≅ ′J

cT
. (3.6)

We assume that the power of the cooling is described by equation (3.1).  The equilibrium

power p0  is given by

p J T TN N
0

2
0= = −ρ ΣΩ( )bath . (3.7)

Using g p T Np T≡ =∂ ∂/ /0 0  we find that

J gT N2
0 0ρ ≅ / , (3.8)

where we have made the approximation that T TN N>> bath .  This approximation is valid

when Joule heating, due to large current in the TES, elevates the temperature far above the

bath temperature.  In this approximation, equation (3.6) becomes

1

τ
α

eff

≅ ′g

c N
. (3.9)

Assuming that no heat is conducted out of the ends of the TES, the solution of equation

(3.4) is subject to the constraint that ∂ ∂T x/ = 0  at x = 0  and x l= .  The solution is written

as a sum of cosine components with wavelengths λ = 2l n/ :
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The nth component with decrease exponentially with time if

1
0

2

τ
κ π

eff
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<
c

n

l
. (3.11)

The thermal conductivity κ of a TES in the phase transition is approximately is given by the

Wiedemann-Franz law of equation (2.4), which is written as

κ ρ= LT / n , (3.12)

where L is the Lorenz number an ρn is the normal state resistivity.

If the n=1 component of equation (3.10) is stable, then all the components in which n>1 are

also stable.  For the case that n=1, equation (3.11) is rewritten as

ρ π
αnl

LT

gl

N<
′







2
(3.13)

where we made substitutions using approximation (3.9) and equation (3.12).  We divide

both sides of equation (3.13) by the cross sectional area of the TES to find that the normal

state resistance RN  of the TES is constrained by

R
LT

G

N
N <

′






π
α

2
, (3.14)
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where G is the thermal conductance between the TES and the substrate.  (Equation (3.14) is

stated in a paper by Kent Irwin [4].  The computation was first described to me by Blas

Cabrera [5].)

We have now obtained a constraint on the normal resistance of a TES.  Using the values of

Table 3.1, we find that the normal resistance RN of the TES must be less than 1 Ω for the

TES to be stable when operated at high power.  If the normal resistance is greater than 1 Ω,

then Joule heating causes spatial temperature variations to increase with time rather than

decrease.

Table 3.1  The values typically used in determining the resistance limit of a TES.  The typical values are estimated for a
TES in a x-ray microcalorimeter operated at about 100 mK.  An illustration of such a microcalorimeter is shown in
Fig. 1.6.  In any particular x-ray microcalorimeter, each of the values can vary from the estimated values of this table by
significant factors listed in the third column.  For the “typical” x-ray microcalorimeter, we find that the normal
resistance must less than 1 Ω.  For other x-ray microcalorimeters, this estimate may be off by 25 times.

Parameter Typical value Typical variation in value

′α 100 5

L 2.4  W / K2× −10 8 Ω 5

G 1 nW / K 10

N 5 1.25

T 100 mK 1.5

R
LT

G

N
N <

′






π
α

2 Rn  < 1 Ω 25
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As indicated in Table 3.1, the estimate may vary by a factor of 25 depending of the

particular microcalorimeter.  (Here, I have assumed that the errors multiply.  Therefore, the

errors of each of the terms add in quadrature only after the logarithm of both sides of

equation (3.14) is taken.)  The 1 Ω upper limit of the normal resistance is a crude estimate

based on a number of approximations:  the TES was approximated as being a one

dimensional wire, the thermal conductivity was estimated from the Wiedemann-Franz Law,

the energy associated with the formation of domain boundaries between superconducting

and normal regions was neglected, and the thermal coupling was estimated from values of

“typical” x-ray TES microcalorimeters.  Nevertheless, real TES thermometers do suffer

from spatial instability due to Joule heating.  To minimize the effect, we try to keep thermal

conductance across the TES as large as reasonably possible.  Consequently, we design our

TES thermometers to have an electrical resistance less than 1 Ω.

Calculations of resistance fluctuations in two dimensional resistive thermometers have been

carried out by Voss and Clarke [6,7].  They found that resistance fluctuations can result in

1/f noise.  In general, the spatial instability is less severe in two dimensional TES

thermometers than it is in one dimension because the electric current is free to wind around

highly resistive hot spots in two dimensions.

Experimental concerns place a lower limit on the resistance of the TES thermometer.  Our

TES thermometers are measured with a bias circuit as shown in Fig. 4.2.  The contact points

between the wires and other elements in the circuit contribute a small parasitic resistance of

about 10 mΩ.  The normal resistance of the TES should be much larger than the parasitic

resistances.  Based on the these considerations, we have usually designed our TES

thermometers to have a normal state resistance Rn  of several hundred mΩ.
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3.4  The effective temperature and the thermodynamic energy

resolution

As previously described, a microcalorimeter is thermally coupled to a large heat reservoir

maintained at constant temperature Tbath , called the cold bath.  An illustration of the

thermal coupling is shown in Fig. 3.1.  The thermal conductance G between the

microcalorimeter and bath is the dominate thermal coupling between the microcalorimeter

and the environment.  The internal energy within a calorimeter fluctuates due the random,

thermodynamic exchange of energy between the calorimeter and the bath.  A thermometer,

such as a TES, is used to measure changes in internal energy U of a microcalorimeter.  Note

that even when the temperature of a microcalorimeter is constant, the measurements made

by a thermometer will fluctuate due to thermodynamic noise.  This occurs because

thermometers actually measure thermal energy, not temperature.  (The average energy in a

thermometer corresponds to a particular temperature.)

The thermodynamic fluctuations of the internal energy are a form of noise in the

microcalorimeter.  These fluctuations, when combined with other noise, limit the energy

resolution of a microcalorimeter.  We shall now present a calculation of the thermodynamic

fluctuations in a microcalorimeter in thermal equilibrium with the bath so that the

microcalorimeter temperature T equals the bath temperature Tbath .

In this calculation, we divide the space of all possible microscopic states of the system

(which includes the bath and the microcalorimeter) into groups, with each group defining a

macrostate.  Each macrostate of the system corresponds to the microcalorimeter having

internal energy U1  and the bath having internal energy U2 .

The parameter Ω1  is the number of microstates of the microcalorimeter that have internal

energy U1 .  The entropy of the microcalorimeter is given by S k1 1= B ln Ω .  Likewise, the
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parameter Ω2  is the number of microstates of the bath that have internal energy U2 .  The

entropy of the bath is given by S k2 2= B ln Ω .

The effective temperature of the microcalorimeter is defined by

T U S1 1 1= ∂ ∂/ . (3.15)

The actual temperature T of the microcalorimeter must remain constant according to the

zeroith law of thermodynamics.  However, the effective temperature T1  fluctuates with time

as the microcalorimeter wanders from macrostate to macrostate.

Rewriting equation (3.15) as ∆ ∆S U T1 1 1= /  and taking the derivative with respect to

temperature results in

C2

G

Microcalorimeter

Bath

P tPN( )

C1

U1

U2

Figure 3.1  The thermal coupling between the microcalorimeter and the bath.  The thermal coupling is associated with
thermal noise in the microcalorimeter.  The thermal noise causes the internal energy of the calorimeter to fluctuate.
The transport of energy between the microcalorimeter and the bath is represented by a power source PPN(T).
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∆

, (3.16)

where C U T1 1 1= ∂ ∂/  is the heat capacity if the microcalorimeter.  We have made the

approximation that the effective temperature T1  approximately equals temperature T

because the fluctuations in T1  are small.

The probability of finding the system in a macrostate with energies U1  and U2  is

proportional to the number (Ω Ω Ω= ⋅1 2 ) of associated microstates because the system is

equally likely to visit any particular microstate.  The entropy of the system is S S S= +1 2 .

The probability of finding the system in a macrostate with entropy S is given by

p S k∝ ∝Ω ∆exp( / )B (3.17)

where ∆S S S≡ − .  The entropy S  is the equilibrium value of the entropy S.  We also

define ∆S S S1 1 1≡ −  and ∆S S S2 2 2≡ − .  Fluctuations in the entropy S are related to

fluctuations in the entropy of the bath and microcalorimeter by the following equation:

∆ ∆ ∆S S S= +1 2 . (3.18)

The fluctuations in energy of the microcalorimeter correspond to negative fluctuations in

the energy of the bath because energy is conserved:  ∆ ∆U U1 2= − , where ∆U U U1 1 1= −

and ∆U U U2 2 2= − .  From the Second law of thermal dynamics, ∆ ∆S U T= / , we find

∆ ∆ ∆S U T U T2 2 1= = −/ / . (3.19)
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The energy ∆U1  of the microcalorimeter is expressed as a function of entropy S1  using a

Taylor expansion:

( )∆ ∆ ∆U
U

S
S

U

S
S1

1

1
1

2
1

1
2 1

21

2
= + + ⋅⋅⋅∂

∂
∂

∂
   , (3.20)

where we retain terms up to second order.  We now express fluctuations in the entropy of

the microcalorimeter in terms of fluctuations in the effective temperature:

∆ ∆ ∆S
S

T
T

C

T
T1

1

1
1

1
1= =∂

∂
, (3.21)

where ∆T T T1 1= − .  Using equations (3.15), (3.20) and (3.21) we obtain,

( )∆ ∆ ∆U T S
C

T
T1 1

1
1

21

2
= + . (3.22)

Using equations (3.17), (3.19), and (3.22) we find that

( )
p

C T

k T
∝

−









exp 1 1

2

22

∆

B

. (3.23)

Equation (3.23) describes the probability of the microcalorimeter having the effective

temperature T1 .  Apparently, equation (3.23) indicates that the effective temperature T1

forms a Gaussian distribution centered on temperature T with standard deviation

σT
k T

C
1

2

1

= B (3.24)
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Fluctuations in the effective temperature are related to energy fluctuations by ∆ ∆U C T1 1 1= .

Therefore, the standard deviation of the energy fluctuations is σU k T C1
2

1
1 2= ( ) /

B  [8].  The

full-width-half-max of width of the energy fluctuations is

∆U k T CFWHM B= 2 35 2
1. (3.25)

Equation (3.25) relates the temperature and heat capacity of a microcalorimeter to

fluctuations in the internal energy.

In basic thermodynamic texts, the above result is often proved using Maxwell-Boltzmann

statistics.  However, it is important to include the above calculation in this thesis for two

reasons.  First, the above calculation makes it clear that equation (3.25) applies to any

microcalorimeter regardless of the quantum statistics involved.  In the above calculation, no

assumption was made with regard to the type of quantum statistics that apply to the gas

inside the microcalorimeter: it applies to Maxwell-Boltzmann, Fermi-Dirac, or Bose-

Einstein statistics.  It even applies to calorimeters that contain both a Bose gas and a Fermi

gas.  This is important because the heat capacity of a microcalorimeter is dominated by

either fermions or bosons depending on whether the absorber is a metal or dielectric.

Second, the above calculation demonstrates the difference between the effective

temperature and actual temperature.  The effective temperature is a measure of the internal

energy of the calorimeter as in the above calculation.  Thermometers measure effective

temperature, not actual temperature.  The actual temperature is the effective temperature

averaged over a large ensemble of identical systems.  (Note that the temperature is not a

time average of the effective temperature in one system because the temperature may vary

with time.)



51

3.5  Thermal noise

The thermal energy fluctuations, which were described in Section 3.4, correspond to energy

being exchanged between the bath and the microcalorimeter.  The energy exchange causes a

power P(t) to be transferred from the bath into the microcalorimeter as illustrated in

Fig. 3.1.  The power is frequency independent because the energy exchange is a frequency

independent process.  The power needed to generate the fluctuations in energy ∆UFWHM  in

the microcalorimeter, depends on the thermal conductance G between the bath and the

microcalorimeter.  The power is given by

P f k T GPN B( )
2 24= . (3.26)

If the bath temperature Tbath  is not equal to the temperature T of the microcalorimeter, the

power of the thermal noise is

( )P f k T T GPN B bath( )
2 2 22= + (3.27)

[9,10].  This thermal noise is often called phonon noise by people in our field because it is

often associated with the exchange of phonons between the microcalorimeter and a thermal

reservoir.  In our calorimeters, the heat capacity is dominated by the electrons.  Therefore,

the thermal noise is actually dominated by exchange of the energy between the electrons in

the calorimeter and phonons in the bath.

3.6  Exceeding the thermodynamic energy resolution

One might expect that the energy resolution of a calorimeter of temperature T and heat

capacity C1  can not be better than the scale of the thermodynamic fluctuations in the
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microcalorimeter ∆UFWHM , which is described by equation (3.25).  However, it is possible

to measure energy fluctuations smaller than ∆UFWHM  with a calorimeter.  An illustration

of how this is possible is given in Fig. 3.2.  The internal energy of the calorimeter fluctuates

by an amount ∆UFWHM  over long time intervals.  However, the internal energy of the

calorimeter is correlated over time intervals shorter than the thermal time, τth = C G1 / .

Therefore, the internal energy of a calorimeter fluctuates less over shorter time intervals.

Measurements of the microcalorimeter energy that take place over time intervals much

smaller than τ th can achieve much higher energy resolution than ∆UFWHM .

When TES based x-ray microcalorimeters are operated at low power, the response of the

microcalorimeter to the absorption of an x ray is a pulse in temperature (as shown in

Fig. 1.3) which has a decay time τ th .  In this case, the ratio of signal to electronic noise is

small for frequencies higher than frequency f th th= 1 / (2 )πτ .  The bandwidth of the

measurement extends approximately from zero frequency up to the frequency f th .

Therefore, measurement occurs on time scales comparable to τ th .  This results in an energy

resolution approximately equal to the thermodynamic fluctuations of equation (3.25).

When a sensitive TES is operated at sufficiently high power, the gain of the calorimeter

boosts the signal over the noise for a range of frequencies.  In addition, electrothermal

feedback in the microcalorimeter causes the pulses to be shortened or the effects Johnson

noise to be reduced significantly, as will be described in Chapter 4.  In these cases, the

signal dominates over the electronic noise in a bandwidth that extends from zero frequency

to frequencies higher than f th .  The bandwidth in which the signal dominates over the

noise increases with ′α  [10,11].  Therefore, a TES microcalorimeter with ′ >>α 1  can far

exceed the thermodynamic energy resolution, which is described by equation (3.25).  The

resolution of a microcalorimeter will be discussed further in Chapter 4.
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3.7  Design criteria

We design our TES microcalorimeters to obtain high energy resolution and high quantum

efficiency.  In optimizing the design of our calorimeters, we must consider their

thermodynamic properties.  Some of the more important factors influencing detector design

are:

• Thermodynamic noise.  The heat capacity and temperature of a microcalorimeter must

be small to minimize the noise from thermodynamic fluctuations as described in

Section 3.4.  Our heat capacity is chosen to be approximately 1 pJ/K so that we can

achieve an energy resolution of approximately several eV at 100 mK for a moderately

sensitive TES.

• Thermal conductance within the TES.  Our TES thermometers are designed to have a

normal state electrical resistance of approximately 0.1 Ω.  Larger resistance causes poor

Pulse

time

s
ig

n
a
l+

n
o
is

e
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Figure 3.2  Thermodynamic fluctuations and energy resolution.  In the figure, a small pulse is shown in the presence of
larger noise.  The noise is generated by internal fluctuations of a microcalorimeter.  Fluctuations of magnitude ∆UFWHM

occur over time scales longer than τth=C1/G.  Electrothermal feedback in a microcalorimeter can cause pulses to be
shorter than τth.  In this figure, absorption events with energies less than ∆UFWHM are easily distinguished from the
noise because much of the associated signal occurs at higher frequencies than does the majority of the noise.  Even
without pulse shortening, the energy resolution can exceed the thermodynamic limit if the signal dominates over the
noise in a bandwidth larger than G1/2πC.  Electrothermal feedback, pulse shortening, signal, and noise are described in
detail in Chapter 4.
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thermal conductivity in the TES, which leads to spatial instabilities as described in

Section 3.3.

• Thermal conductance between the microcalorimeter and the bath.  The number of

x rays a calorimeter can measure per second is limited by the decay time of the pulses

produced by the microcalorimeter.  The decay time is determined by thermal time C/G

and other factors as will be described in Chapter 4.  Microcalorimeters with larger

thermal conductance G have faster count rates.  However, if the thermal conductance G

is too large, then the heat will leak out of the microcalorimeter before the signal can be

recorded.  We design our microcalorimeter to have coupling to the bath G between 1 to

10 pJ/K so that we can count at a rate of hundreds of counts per second.  The value of

the thermal conductance G is determined by the volume of the TES that lies on top of

our silicon substrate as described in Section 3.2.

• Thermal diffusion in the absorber and TES.  Heat must diffuse throughout a

microcalorimeter on a much shorter time scale than the decay time of a pulse from the

microcalorimeter.  Otherwise, the amplitude of the pulses will be reduced, energy

resolution will be degraded, and absorption events occurring in different places in the

observer will cause differing responses in the microcalorimeter.  I designed our

microcalorimeters so that heat is able to diffuse across the length of the

microcalorimeter in several microseconds.  The thermal conductivity in the metals films

of our microcalorimeters limits their size to be no larger than several hundred microns.

(An estimate of the thermal conductivity is obtained from the Wiedemann-Franz law

(2.4), using the measured electrical conductivity of our metal films.)

We shall describe the design of these devices further in Chapter. 5.
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C h a p t e r  4

MICROCALORIMETER THEORY

4.1  Introduction to microcalorimeter theory

In most previous analyses of bolometers and microcalorimeters [1-5], the devices

considered were modeled as resistive thermometers, whose resistance is a function of

temperature and is independent of the electrical current conducted through them.  However,

the resistance of most low temperature thermal sensors actually depends on both

temperature and current.  Therefore, the standard bolometer theory does not strictly apply to

practical devices except in special limits when the current dependence can be neglected.

Some current dependent effects were included in work by Mather [6] and Frank et al. [7].

Our model, presented here, includes all first-order current-dependent effects and provides a

broader description of resistive microcalorimeters.

Our theory is a generalization of bolometer theory.  The derivation is more straightforward

than that presented in the bolometer theory papers of Jones [2], Mather [3,6], and Moseley

et. al. [4] because we proceed more directly by linearizing the differential equations, rather

than using complex impedance formalism.

Our model describes microcalorimeters that consist of an absorber strongly coupled to a

thermometer as shown in Fig. 4.1.  An energetic event in the absorber, such as the

absorption of an x-ray photon, increases the temperature of the absorber and thermometer.

The change in temperature causes a proportional change in electrical resistance of the

thermometer.  The microcalorimeter is weakly coupled to a cold bath so that the
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temperature returns to an equilibrium value after the event occurs.  Thus, the response of a

microcalorimeter to an event is typically a temperature pulse with a sharp rise and an

exponential decay.  The amplitude of the pulse is proportional to the energy of the event.

For simplicity, we assume that the thermometer and absorber thermally equilibrate very

quickly and have practically the same temperature T.  Then, the state of the

microcalorimeter can be described by just two differential equations and two dynamic

variables: the temperature of the microcalorimeter T, and the electric current through the

thermometer I.  Large calorimeters [8-12] and other calorimeters in which the absorber is

weakly coupled to the thermometer will be described in Section 4.17.  A thermal model for

large calorimeters was developed by Proebst et al. [9], but they did not include current

dependent effects.

P tabs( )

P I TJ( , ) Ctherm

Cabs

Gabs

GP (T)cool

C T( )

Thermometer

Absorber

Bath

Figure 4.1.  The thermal circuit of a simple microcalorimeter.  The particle absorber is thermally connected to a
thermometer by a strong thermal conductance Gabs.  The absorber and thermometer are coupled to a cold bath by a
weaker thermal coupling G.  Ideally, the absorber and thermometer act like one thermal element with temperature T
and heat capacity C(T).  Under operating conditions, Joule heating PJ(I,T) in the thermometer elevates the equilibrium
temperature of the thermometer and absorber above the bath temperature Tbath.  Absorption of a particle in the absorber
causes a heating power Pabs(t) which temporarily increases the temperature T above equilibrium.  This pulse in
temperature is measured by the thermometer.
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 In the following sections, we present our microcalorimeter model, and we describe

conditions under which microcalorimeters operate in a stable, unstable, or oscillatory

fashion.  Electrothermal feedback, which is the interaction between the electrical and

thermal circuits, and the effects of Joule heating in microcalorimeters are discussed.  We

derive new expressions for the pulse shape and theoretical limiting energy resolution.  We

include a discussion of the effects of amplifier noise and finite bandwidth on the energy

resolution of these detectors.  In Section 4.15, we provide an example of the application of

the model to a transition-edge-sensor microcalorimeter.

4.2  Current-temperature model

4.2.1  The electrical circuit

We analyze microcalorimeters with thermometers connected to electronic bias circuits

equivalent to the one shown in Fig. 4.2.  This electrical circuit consists of a Thevenin

equivalent voltage Vth , a Thevenin equivalent resistor Rth, an inductance L, and a resistive

thermometer R.  Changes in temperature of the thermometer result in changes in current or

voltage at the thermometer.  In this model, the thermometer is a resistor R I T( , )  whose

resistance is a function of both the electric current I through it and its temperature T.

Throughout this paper, we derive expressions for the current through the thermometer.

However, the model also applies to the case when the voltage across the thermometer is

measured.

The inductance L includes parasitic inductance in the circuit and the inductance of the input

coil of a dc SQUID current amplifier, if one is used to measure the current though the

thermometer.  The electrical capacitance of the thermometer is neglected.  This is a valid

assumption when the RC time is much faster than the L/R time of the electrical circuit.
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This circuit provides a current bias or voltage bias to the thermometer depending on

whether the resistance Rth is large or small compared to the thermometer resistance R I T( , ) .

If the resistance Rth  is large compared to R I T( , ) , the bias circuit provides a current bias.

If the resistance Rth is small compared to R I T( , ) , the circuit biases the thermometer with a

near constant voltage bias at low frequency.  The thermometer is always current biased at

frequencies greater than the R/L frequency of the circuit due the inductance L of the circuit.

The electrical circuit is described by the following equation:

L
dI

dt
V I R R I T= − +th th( ( , )) (4.1)

4.2.2  The thermal circuit

The thermal circuit is shown in Fig. 4.1.  In our model, the thermometer is strongly coupled

to the absorber and only weakly coupled to the bath at temperature Tbath .  During operation,

L

R I,T( )

Rth

Vth

Thevenin equivalent
circuit

L

R I,T( )

Rs

Rb

Vb

typical bias
circuit

Figure 4.2.  An example electrical bias circuit of a microcalorimeter and the Thevenin equivalent circuit.  For the
example circuit, the Thevenin equivalent voltage is Vth=VbRs/(Rs+Rb) and the Thevenin equivalent resistance is
Rth=RsRb/(Rs+Rb).  The thermometer's resistance R depends on current I and temperature T.  The combination of
the Thevenin equivalent voltage Vth and resistance Rth can apply either a current or a voltage bias to the
thermometer depending on the value of Rth.  The inductance in the circuit is L.  Changes in temperature of the
thermometer affect the current and voltage at the thermometer.
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the Joule heating power, P tabs( ) , due to electric current in the thermometer, elevates the

temperature of the thermometer and absorber above the bath temperature.

In this model, we assume that the thermometer and absorber can be regarded has having a

common temperature, T, and a common heat capacity, C T( ) .  This is true if the

thermometer and absorber are much better coupled to each other than they are to the cold

bath and if the characteristic time of the electrical circuit is much slower than the time it

takes for the thermometer and absorber to thermally equilibrate.  In this case, the

thermometer and absorber can be regarded as equilibrating instantaneously.  Events in the

absorber can be regarded as causing instantaneous changes in the temperature of the

combined absorber-thermometer system.  In this approximation, an event depositing an

energy E into the absorber at time t t= ′ can be described as an input power

P t E t tabs ( ) ( )= − ′δ , where δ ( )t t− ′  is the Dirac delta function.  The above assumptions

are reasonable for many types of microcalorimeters.  However, the model can be easily

extended to the case in which energy slowly arrives into the microcalorimeter, as will be

described in Section 4.17.

 The thermal circuit is described by the following equation:

C T
dT

dt
P I T P T T P tc( ) ( , ) ( , ) ( )= − +J bath abs (4.2)

where P I T I R I TJ ( , ) ( , )= 2  is the Joule heating due to the electrical bias, and P T Tc bath( , )

is the power of the cooling into the cold bath.

We assume that the cooling of the microcalorimeter into the cold bath is described by a

power law,
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P T T K T Tc
N N( , ) ( )bath bath= − . (4.3)

The constants K and N depend on the geometry of the detector and on the means by which

the detector is thermally coupled to the cold bath.

4.3  Operating point

In order to function as part of a microcalorimeter, the thermometer must be operated near a

stable equilibrium point.  The equilibrium conditions are given by setting the derivatives

and P tabs ( )  in equations (4.1) and (4.2) to zero.  The current in equilibrium I0  is given by

( )
I R T

K T T

R

N N

0 0 0

0

0
( , ) =

− bath
, (4.4)

where R0  and T0  are the resistance and temperature of the thermometer at equilibrium.

The thermometer is in electronic equilibrium when the voltage across the inductor is zero

and the voltage across the thermometer is V I R0 0 0= .

The temperature T and current I are also constrained by the relationship between current,

temperature, and resistance R I T( , ) :

R I T R( , ) = 0 . (4.5)

 This relationship is determined by the type and the design of the thermometer used in the

microcalorimeter.

Both equations (4.4) and (4.5) are satisfied when a microcalorimeter is at equilibrium.  For a

particular value of R0 , the simultaneous solution of the two equations defines the operating
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point ( , )I T0 0 .  An illustration of the intersection of solutions to these equations for a

transition-edge-sensor microcalorimeter is given in Section 4.15.

4.4  Linear approximation near equilibrium

In order to derive simple analytical expressions for stability, pulse shape, noise, and energy

resolution, it is necessary to simplify the differential equations that describe the

microcalorimeter.  Near equilibrium, ( , )I T0 0 , equations (4.1) and (4.2) can be

approximated by coupled linear partial differential equations and can be written in the

following form:

d

dt

I

T
A

B

I

T

δ
δ

τ
τ

δ
δ







 = − −
















−

−
el

eff

1

1
, (4.6)

where δI I I= − 0  and δT T T= − 0 .

These linearized equations are obtained by rewriting (4.1) and (4.2) so that only the

derivatives appear on the left side of the equations.  Then, the Taylor expansion in I and T

of the right sides of the equations is taken at the equilibrium point, ( , )I T0 0 .  Terms of order

higher than first order in δI  and δT  are neglected.  The matrix contains four constants

which represent coefficients of the first order terms in the Taylor expansion.  We now

define these coefficients and describe their physical meaning.

The electric time constant, τel , gives the characteristic response time of the electrical

circuit.  It is similar to the L/R time of the circuit, but it also includes effects due to the

current dependence of the resistance of the thermometer.  It measures how quickly the

electrical circuit can respond to resistance changes of the thermometer.
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1 1
10τ

β
el

th= + +
L

R R( ( )) (4.7)

 The β parameter measures how sharply the resistance of the thermometer increases with

increasing current at the operating point

β ∂
∂

≡ 



 =

=

I

R

R I T

I I I

T T

0

0 0

0

( , )
(4.8)

For semiconductor thermistors β < 0 .  For superconducting transition-edge-sensors β > 0 .

The effective thermal time constant, τeff , gives the time scale of thermal changes in the

microcalorimeter.  The effective thermal time constant in turn depends on two other time

constants,

1 1 1

τ τ τeff J th
= − . (4.9)

The thermal cooling time constant, τth , represents the characteristic time scale of the

cooling into the cold bath in the absence of electrothermal feedback.

1
1 1
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∂
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 = − −
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TI I

T T

N

N

( , )

( )
, (4.10)

where G T P T T T KNTbath
N( ) ( , ) /= = −∂ ∂c

1  is the thermal conductance between the

thermometer and the cold bath, G G T0 0= ( ) , C C T0 0= ( ) , and γ  is the sensitivity of the

heat capacity to changes in temperature,
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γ ∂
∂

≡ 



 =

=

T

C

C I T

T I I

T T

0

0 0

0

( , )
. (4.11)

Because the absorber usually has a much higher heat capacity than the thermometer, the

value of γ  is usually determined by the absorber material.  For normal metals, γ = 1.  For

semiconductors at low temperature and for a superconductors well below the transition

temperature, γ = 3.  The γ  parameter is negative for a superconductor in the phase

transition between the superconducting and normal metal states.

The Joule heating time constant, τJ , measures the time scale of changes in the Joule heating

due to temperature perturbations.
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 The parameter ′α  describes how sharply the resistance increases with increasing

temperature at the operating point,

′ ≡ 



 =

=

α ∂
∂

T

R

R I T

T I I

T T

0

0 0

0

( , )
. (4.13)

 The value of ′α  is a measure of the thermometer's sensitivity to temperature changes.

Note that ′α  in equation (4.13) is not exactly the same as the commonly used term

α = ( / ) /T R dR dT .  The constant ′α  is the partial derivative of the thermometer resistance

with respect to temperature and is evaluated at the operating current I0 .  In practice, ′α  is

difficult to measure.  The sensitivity of resistive thermometers are usually measured at low

currents to avoid self-heating.  Values of α measured at low current is typically used as a
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benchmark for the sensitivity of these thermometers.  The values of α derived from these

measurements will typically be larger than ′α .  We discuss the implications of this in

Section 4.14.

The cross terms, A and B, in equation (4.6) are defined as follows:

A
I

L

R I T

T

I R

LTI I

T T

≡ 





= ′
=
=

0 0 0

00

0

∂
∂

α( , )
, (4.14)
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I R

CI I

T T
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= +
=
=

1
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0

0 0

00

0

∂
∂

βJ ( , )
( ). (4.15)

The product of the cross terms describes the strength of the coupling between the electrical

and thermal parts of the system.  The electrothermal coupling time constant τetc  is defined

by

1
2

0 0
2

0

0 0τ
β α

etc

≡ = 












 + ′AB

R

L

I R

C T
(2 ) . (4.16)

 As described in Section 4.6, the value of τetc  pertains to the stability of the

microcalorimeter.

4.5  Dynamical solution for small perturbations

The solution to equation (4.6) of the linear model in Section 4.4 describes the shape of a

pulse resulting from the rapid absorption of a small amount of energy, E.  An energetic

event at time t = 0  causes a perturbation from equilibrium, which results in a exponential

pulse of the form:



66

δ
δ

τ τI

T

T

I T I T
I x e I x et t






 =

−
−− −∆

d r r d
d r

r d( )/ /
1 2 , (4.17)

where ∆T T E C T E C= + − ≅( / )( / ) /0 0 0 01 2 1γ γ  is the temperature rise caused by the

event.  The approximation is valid in the limit that dC T dT C E( ) / /<< 0
2 2 .

The eigenvalues λ1  and λ2  of the matrix presented in equation (4.6) give the rise time τ r

and the decay time τd  of the current pulse:

λ
τ τ τ τ τ τ

1

2

2

1 1

2

1 1 1 1 4= − = −





 − +






 −

r eff el eff el etc

(4.18)

λ
τ τ τ τ τ τ

2

2

2

1 1

2

1 1 1 1 4= − = −





 + +






 −

d eff el eff el etc

(4.19)

In Section 4.7, the rise and decay times will be discussed in more detail.

The eigenvectors give the directions of the rise and the decay of the pulse in (I,T) space.

The eigenvectors of the matrix are

x r

r
x

r eff
1

1 1 1

1
= 






 = − +









− − −I

T
T B ( )τ τ (4.20)

and

x d

d
x

d eff
2

1 1 1

1
= 






 = − +









− − −I

T
T B ( )τ τ , (4.21)
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where Tx  is an arbitrary constant.  The directions of the eigenvectors determine the shape of

the pulse, but their absolute magnitudes have no significance.  The ratio of the components

of x2  gives the ratio of current δI  to temperature δT  in the tail of the pulse.

 The current change as a function of time after an absorption event of energy E is

δ τ
τ

τ
τ τ τ

τ τ
I

T

B

e et t
= +






 +







−
−

− −∆
1 1r

eff

d

eff d r

r d/ /
    for    t ≥ 0. (4.22)

As an example, a pulse in a microcalorimeter which is described in Section 4.15 is shown in

Fig. 4.3.  In (I,T) space, the pulse has three legs and is roughly triangular.  In the first leg,

the temperature rises by ∆T , which increases the resistance R I T( , )  because ′ >α 0  in this

example.  Since the temperature rise is instantaneous in this model, the current does not

change during the first leg.  In the second leg, the increased resistance causes a decrease in

current.  This is the rise of the current pulse.  In the third and final leg, the temperature and

resistance decrease so that the current increases.  This is when the decay of the current pulse

occurs.  At the end of the final leg the microcalorimeter is returned to equilibrium.

4.6  Stability of the microcalorimeter

Researchers seek the highest possible energy resolution from microcalorimeters.  High

energy resolution requires that the thermometers have large ′α  and that they be operated at

high power so that the signal dominates over amplifier noise.  However, if the power and

′α  are too large, microcalorimeters may become unstable due to positive feedback and

will not work at all.  Therefore it is important to describe the conditions under which a

microcalorimeter operates in a stable fashion.
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The rise and decay times in equations (4.18) and (4.19) determine how a microcalorimeter

responds to absorption events or other perturbations.  A summary of the types of behavior

expected based on the linear model of Section 4.4 is shown in Fig. 4.4.

If the rise and decay times are positive real numbers, the microcalorimeter is stable and not

oscillatory, which is the usual way microcalorimeters are operated.  This case is shown in

Fig. 4.4a.  The requirement that both the rise and decay time be positive numbers results in

three constraints.  Two of these constraints pertain to whether a microcalorimeter is stable

or unstable.  The third constraint pertains to whether a microcalorimeter responds to

absorption events with exponentials or sinusoids.  The two stability constraints are

τ τeff el
− −<1 1 (4.23)
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Figure 4.3.  A pulse in current and temperature for a voltage-biased microcalorimeter with α’, β, and γ greater than
zero.  The microcalorimeter's parameters are described in Section 4.15.  Absorption of a particle elevates the
temperature and resistance of the thermometer above equilibrium.  During the rise of the current pulse, current
decreases and temperature increases.  The decay of the pulse returns the microcalorimeter to equilibrium.
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τ τ τeff el etc
− − −<1 1 2 . (4.24)

The constraint to avoid oscillatory behavior is

1 1 4
2

2τ τ τeff el etc

+






 > . (4.25)

Note that these inequalities can not be simplified by taking their reciprocals because the

time constants τel , τeff , and τetc
2   can be either positive or negative.  A microcalorimeter

will have pulses that decay exponentially to equilibrium only if all three constraints are

satisfied.  Inequality (4.23) describes how fast the electrical circuit time τel  must be to

feedback against the effective thermal time τeff  in order for the microcalorimeter to be

stable.  Inequality (4.24) describes how large the electrothermal coupling constant τetc
2

must be for the system to stable.  Inequalities (4.23) and (4.24) are satisfied when the real

parts of the of the eigenvalues λ1  and λ2  are negative.  Inequality (4.25) places an upper

limit on the coupling constant τetc
2 .  This inequality is satisfied when both eigenvalues λ1

and λ2  are real numbers.  Notice that if τeff  is negative and τel  and τetc
2  are positive (as

is the case for a transition-edge sensor based microcalorimeter operated at low power), a

microcalorimeter is stable regardless of how fast or slow the electronics may be.

If the electrothermal coupling is very strong, then

1 1 4
2

2τ τ τeff el etc

+





 < (4.26)
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In this case, the eigenvalues λ1  and λ2   are not real numbers.  Such a microcalorimeter is

characterized by sinusoids rather than exponential pulses.  Whether these sinusoids decay or

increase with time depends on whether inequalities (4.23) and (4.24) are satisfied or not.

Examples of the oscillating responses are shown in Fig. 4.4c and Fig. 4.4d.

If either inequality (4.23) or inequality (4.24) does not hold, then the equilibrium is unstable

because one or both of the eigenvalues λ1  and λ2  have positive real parts.  In this case, the

system will diverge from equilibrium exponentially until the nonlinear terms in the

differential equations become important.  Examples of unstable responses are shown in

Fig. 4.b and Fig. 4.d.  The relationship between stability and feedback in the

microcalorimeter is discussed in Section 4.8.

a.) stable exponential b.) stable sinusoid

c.) unstable exponential d.) unstable sinusoid

t

I(t)

I(t)

I(t)

I(t)

t

t

t

Figure 4.4.  Microcalorimeters can respond to perturbations from equilibrium in a stable (a,b) or unstable (c,d) and a
exponential (a,c) or oscillatory (b,d) fashion.  The response of a particular microcalorimeter depends on the electrical
and thermal circuits and on α’, β, and γ of the calorimeter.
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4.7  Electrothermal feedback in a microcalorimeter

We now describe electrothermal feedback in microcalorimeters in more detail.

Electrothermal feedback is the interaction between the electrical and thermal circuits.

Microcalorimeters with no significant electrothermal feedback, respond to absorption

events with pulses that decay to equilibrium exponentially with the decay time τth .

Electrothermal feedback can cause a microcalorimeter to oscillate or become unstable as

described in the previous section.  Electrothermal feedback can also lengthen or shorten

pulses.  Electrothermal feedback depends on both the signs and magnitudes of the time

constants τth , τJ , τel , and the coupling constant τetc
2 .

If there is positive electrothermal feedback, pulses are lengthened so that the decay time is

greater than τth .  If there is negative electrothermal feedback, pulses are shortened

compared to τth .  In this section, we give examples in which the feedback is positive or

negative.

In practical microcalorimeters, τel  is often positive and the rise time is often much shorter

than the decay time because the inductance L is small.  In this case, the rise time of the pulse

is approximately equal to τel  and the decay time is

τ
τ

τ
τ τd

th

el

etc J
≅ + −











−
1 1

2

1

. (4.27)

The first term on the right side of equation (4.27) `describes the decay time of the

microcalorimeter in the limit that there is little electrothermal feedback.  The second and

third terms describe how the decay time τd  is modified by electrothermal feedback.

Specifically, the second term describes how the decay time is affected by coupling between
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the electric and thermal circuits.  The third term describes the influence of Joule heating on

the decay time.

We substitute in for τel , τJ , and τetc
2  into equation (4.27) using equations (4.7), (4.12),

and (4.16).  We then obtain

τ
τ

β α
β

γ αd
th th

≅ + + ′
+ +







 + − ′
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1

1

0
2

0

0 0

0

0

1
I R

C T

R

R R

(2 )

( )
( ) (4.28)

When the Joule power I R2  is zero, there is no pulse shortening or lengthening as can be

seen in equation (4.28).  The effect of electrothermal feedback on the decay time τd  is

increases with increasing Joule power.  The sign of the feedback depends on ′α , β, γ , and

whether the thermometer is voltage or current biased.

4.7.1  Current bias

A thermometer is current biased in the limit that Rth → ∞ .  In this case the decay time is

τ
τ

γ αd
th

≅ + − ′












−
1 0

2
0

0 0

1
I R

C T
( ) (4.29)

Equation (4.29) indicates that pulses are lengthened if α γ>  and shortened if α γ< .

Current bias produces negative electrothermal feedback in semiconductor thermometers

because ′α  of these devices is negative and γ  is positive.  Current bias produces positive

feedback in superconducting transition-edge-sensor thermometers with large positive ′α .
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4.7.2  Voltage bias

A thermometer is voltage biased in the limit that R Lth , → 0.  In this case the decay time is

τ
τ

α
β

γd
th

= + ′
+

+



















−
1

1
0

2
0

0 0

1
I R

C T
(4.30)

Equation (4.30) indicates that pulses are shortened when β −1 and

′ > − +α γ β( )1 . (4.31)

Transition-edge-sensor based microcalorimeters, for example, are subject to negative

electrothermal feedback when they are voltage biased at high power because β is positive

and ′α  is large and positive in these devices.

Inductance in the electronic circuit provides a current bias at high frequencies.  Therefore, if

the inductance L is not small, inductance effects tend to oppose the effects of a voltage bias.

In that case, equation (4.19) must be used to calculate the decay time.

4.7.3  Instability and positive feedback

The effects of electrothermal feedback on microcalorimeter stability can be summed up as

follows: When operated at high power, current-biased thermometers with large positive

values of ′α  are not stable due to positive feedback.  Voltage biased thermometers with

large positive values of ′α  are also unstable at high power because inductance in the circuit

provides a current bias and positive feedback at high frequencies.  When operated at high

power, voltage-biased thermometers with large negative values of ′α  and β > −1  are also

unstable due to positive feedback.  However, electrothermal feedback does not cause

current-biased thermometers with negative values of ′α  to become unstable at high power.
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4.8  Joule heating

 As previously stated, the τJ  term represents the effects of Joule heating in the

microcalorimeter.  It is positive when ′α  is positive.  When τJ  is positive Joule heating

tends to push the system away from equilibrium (unless it is counteracted by other

components of the electrothermal feedback as discussed below).  A positive perturbation in

the temperature of the microcalorimeter away from the equilibrium temperature causes

increased Joule heating in the thermometer which in turn may drive the microcalorimeter's

temperature still farther above equilibrium.  Therefore, Joule heating is a potential source of

instability in thermometers with positive ′α .  Three different modes of stable

electrothermal feedback are distinguished from each other by how large the Joule heating

term is in comparison to the thermal cooling term τth .

4.8.1  Weak Joule heating

The effects of Joule heating are weak when

τ τJ th> . (4.32)

 In this mode, cooling into the cold bath dominates over Joule heating.  If τel  is positive, a

microcalorimeter with weak Joule heating is stable whether it is voltage biased or current

biased and whether ′α  is positive or negative.  In this mode, the effective thermal time τeff

is negative.  The effective thermal time τeff  and decay time τd  are significantly lengthened

if τJ  nearly equals τth .  Weak Joule heating occurs when ′α  is small or when bias power

P tabs( )  is relatively low.

4.8.2  Strong Joule heating

Strong Joule heating occurs when
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τ τJ th< (4.33)

In this mode, the Joule heating is stronger than the cooling into the cold bath.  In

thermometers with negative ′α , such as semiconductor based thermometers, the Joule

heating time τJ  is negative.  In those devices, Joule heating shortens the effective thermal

time τeff  and the decay time τd .

In thermometers with positive ′α , such as transition-edge sensors, Joule heating is a source

of positive feedback.  However, the tendency of the Joule heating to make the

microcalorimeter unstable can be counteracted if the thermal circuit is strongly coupled to a

fast electrical circuit which provides negative feedback.

A microcalorimeter with strong Joule heating and positive ′α  is stable under the following

conditions:

τ τ τeff el etc> 2 ,   and (4.34)

τ τeff el> . (4.35)

Note that we were able to rewrite (4.23) and (4.24) this way here because we have assumed

that τeff , τelec , and τetc  are all positive.

Inequality (4.35) is satisfied when

I R

C T
0

2
0

0 0

1( )′ − < −α γ τel , (4.36)

which limits how large ′α  and the Joule power may be.
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 In the limit that ′ >> −α γ , ′ >>α N , and T TN N
0 >> bath , then (4.34) is satisfied when

R Rth < 0 .  This means that if the Joule heating is strong and ′α  is positive, a

microcalorimeter must be approximately voltage biased to be stable.  Because ′α  is a large

positive number for TES thermometers, TES microcalorimeters must be voltage biased to

operate at high power.

4.8.3  Very strong Joule heating

The Joule heating is very strong if

τ τJ th<< . (4.37)

This is a special case of the strong Joule heating described above.  The stability conditions

(4.34) and (4.35) apply to this case as well.

In this mode, cooling into the substrate can be neglected.  Then, τ τeff J= , and the power

from an absorption event P tabs ( )  is nearly entirely canceled by a decrease in Joule heating

[1].  By conservation of energy,

( ( ) ( , ) ( , ))P t P I T P I T dtabs J J+ − ≅∫ 0 0 0 , (4.38)

where I and T are both functions of time as given by equation (4.17).  The above result is

not restricted to the linear model; it applies even when nonlinear terms are included.

4.9  Self calibration

Microcalorimeters are self calibrating.  The relationship between energy and pulse

amplitude in the linear model is given by equation (4.22).  The energy of an absorption

event can be obtained directly from the measurement of a current pulse without need for
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independent calibration if the parameters in equation (4.22) are known from theory or direct

measurement.

In general, the parameters in equation (4.22) must be known precisely in order to calculate

the energy of an event.  However, if the rise time τ r  and the decay time τd  are much less

then the thermal cooling time τth  due to very strong Joule heating, then equation (4.38)

implies that the absorption of energy E causes a decrease in Joule heating approximately

equal to E.  Under these conditions, the energy of an event in a voltage-biased

microcalorimeter with positive ′α  and negligible inductance L is

E V I dt≅ −
∞

∫0 0
δ . (4.39)

Similarly, when thermometers with negative ′α  are current biased at high power so that

there is strong Joule heating, the energy of an event is

E I V dt≅ −
∞

∫0 0
δ (4.40)

where δV V V= − 0  is the pulse in voltage.  In these cases, the energy of an event can be

easily obtained from the integral of a current or voltage measurement, without need of

detailed knowledge of the parameters that describe the microcalorimeter [1].

4.10  Noise in the linear model

The response of a microcalorimeter varies from measurement to measurement due to

thermal noise.  We model the noise in microcalorimeters by adding noise terms to the

differential equations.  A voltage noise term VVN  is added to the electrical equation to

account for voltage fluctuations due to Johnson noise and other sources of electronic noise
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in the thermometer.  In this section, we neglect other sources of electronic noise such as

Johnson noise V tRth ( )  associated with the series resistance Rth in order to simplify the

calculation.  Such electronic noise is described in Section 4.13.  Note that with proper

choice of resistors, it is often possible to design a circuit such that noise from the

microcalorimeter dominates over any Johnson noise from other circuit elements.

Fluctuations in the power dissipated in the thermometer due to voltage noise V tVN ( )  in the

thermometer are modeled by adding a voltage noise power term P tVN ( )  to the thermal

equation.  The voltage noise power term P tVN ( )  represents how the power dissipated in the

thermometer varies with the fluctuation in current and voltage at the thermometer.

P IV I I VVN VN VN= = +( )0 δ .  The voltage noise power term is approximated to first order

by P I VVN VN≅ 0 .  This approximation is valid when I0  is much larger than the typical

fluctuations in the current δI .  Energy fluctuations due to phonon noise are included by

adding a phonon noise power term P tPN ( )  to the thermal equation.

At this point, it is valuable to point out that previous microcalorimeter papers can cause

some confusion about what is actually measured by microcalorimeters.  Previous authors

formulated their descriptions of microcalorimeters in a way that appears to indicate that

thermal noise represents fluctuations in the temperature of a microcalorimeter [1,3,13],

which is not true.  When a microcalorimeter is at thermodynamic equilibrium, it is the

internal energy of the microcalorimeter that fluctuates, not the temperature itself.  The

confusion is cleared up by noting that they implicitly used the notion of an effective

temperature in describing the internal energy in calorimeters.  As described in Section 3.4.

The distinction between temperature and effective temperature is that the effective

temperature is a function of the internal energy of a specific calorimeter, but the actual

temperature is a thermodynamic quantity that depends on an ensemble average of a large

number of identical macroscopic systems.  For the remainder of this thesis, variable T
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represents effective temperature of a specific calorimeter.  The resistance R I T( , )  of a

particular thermometer depends on the effective temperature of that thermometer, not on an

ensemble average.

 The differential equations with noise terms are

L
dI

dt
V I R R I T V t= − + −th th VN( ( , )) ( ) (4.41)

and

C T
dT

dt
P I T P T T P t P t P tc( ) ( , ) ( , ) ( ) ( ) ( )= − + + +J bath abs VN PN . (4.42)

The electrical circuit with a voltage noise source V tVN ( )  included is illustrated in Fig. 4.5.

The figure also includes a voltage noise source V tRth ( )  which we neglect in this section but

will describe in Section 4.13.  The thermal circuit with phonon noise and voltage noise

source terms is illustrated in Fig. 4.6.

The linearized equations for small perturbations from equilibrium are,
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The Fourier transform of equation (4.43) gives,
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We solve for δIf  and δTf , which are the Fourier transforms of the displacements of the

current and temperature from equilibrium.  We find δI f  and δTf  by multiplying by the

complex conjugate.  Note that the voltage noise and the phonon noise are assumed to be

uncorrelated to each other, so they add in quadrature.  This assumption is valid if the

resistance and temperature remain close to their equilibrium values R0  and T0 .  The current

noise obtained from equation (4.44) is given by

δ π τI D f f
V f

L
A

P f

C
f VN

VN PN2 2 2 2
2

2
2

2

0
2

= +



 +















−( ) (2 )
( ) ( )

, (4.45)

where

L

R I,T( )

Rth

Vth

V tRth( )

V tVN( )

Figure 4.5.  The electrical circuit with voltage noise source VVN(t) due to voltage fluctuations in the thermometer and
voltage noise source VRth(t) due to voltage noise from shunt or bias resistors.  The noise due to VVN(t) is described in
Section 4.10.  The noise due to VRth(t) is described in Section 4.13.
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and

τ τVN eff
− −≡ −1 1 0

0

AI L

C
. (4.47)

 The first term on the right side of equation (4.47) is derived from the voltage noise term

VVN  in equation (4.41).  The second term is obtained from the voltage noise power PVN  in

equation (4.42).  If the effects of voltage noise in the electrical circuit opposes the effects of

voltage noise power in the thermal circuit then these two terms have opposite signs and

there is a reduction in the voltage noise in the thermometer [3].

P tabs( )

P I TJ( , )

CTES

Cabs

Gabs

GP (T)cool

C T( )

Thermometer

Absorber

Bath

PVN(t)

P (t)PN

Figure 4.6.  The thermal circuit with a phonon noise power term PPN(t) and a voltage noise power term PVN(t) included.
The phonon noise is caused by the thermal coupling of the thermometer to the bath.  The voltage noise power is caused
by voltage fluctuations in the thermometer.
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The spectral density for positive frequencies of the phonon noise [1] is given by

P f k G T TPN B bath( ) ( )
2

0 0
2 22= + . (4.48)

The first term in equation (4.48) is due to phonons diffusing from the microcalorimeter into

the cold bath.  The second term represents the phonons that diffuse into the

microcalorimeter from the bath.  If the voltage noise is dominated by the Johnson noise of

the thermometer, then the spectral density for positive frequencies of the voltage noise is

V k T RVN B= 4 0 0 .

The theoretical current noise in a microcalorimeter due to Johnson noise and phonon noise

is calculated using equation (4.45).  A plot of current noise as a function of frequency f is

shown in Fig. 4.7.  The noise is plotted for an example microcalorimeter which is described

in Section 4.15.  In the figure, the Johnson noise begins to increase near frequency

1 2/ ( )πτVN .  The Johnson noise and the phonon noise roll off at frequencies greater than

1 2/ ( )πτVN .  The Johnson noise and phonon noise roll off faster still at frequencies greater

than 1 2/ ( )πτel .  Amplifier noise and noise due to Rth, which are also shown in the figure,

are discussed below in Section 4.13.

4.11  Optimal energy resolution

The noise equivalent power (NEP) is defined such that the ratio of signal power P fabs ( )  to

noise equivalent power NEP( )f  equals the ratio of signal to noise.  Using this definition,

we can now calculate the noise equivalent power for noise sources within a

microcalorimeter:
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NEP( ff
C I

A D f
)

( )

2 0
2 2

2 2
=

δ
, (4.49)

where δIf  includes the measured current fluctuations from all noise sources within the

microcalorimeter.  In the ideal case, the voltage noise and the phonon noise dominate over

other forms of noise.  Then, δIf  is given by equation (4.45) and

NEP( NEP ( NEP (VN PNf f f) ) )
2 2 2= + . (4.50)

In the following discussion, we shall assume voltage noise and thermal noise do not

significantly vary during a response to an energetic event in the microcalorimeter.  This is

valid for the case of small perturbations in which temperature and resistance vary by a small
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Figure 4.7.  A theoretical calculation of the current noise due to phonon noise, Johnson noise, and amplifier noise for
the example microcalorimeter described in Section 4.15.  At low frequency, the Johnson noise is reduced due to partial
cancellation of the Johnson voltage in the electrical circuit by the Johnson noise power in the thermal circuit.
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amount in response to an energetic event.  Therefore, we keep the zero-order noise terms

and neglect the noise terms of higher order.

If the voltage noise is white, as is the case for Johnson noise in a resistor or independent

phase slips in a superconductor [14], then the noise equivalent power can be written as

( )
NEP (VN

VN

VNf
C f

A L
V f)

(2 )
( )

2 0
2 2 2

2 2

2=
+− −π τ

(4.51)

( )= + −NEP (0VN VN) (2 )
2 2 21 π τf (4.52)

where

NEP (0VN
VN

VN) (0)=
′

C T

I R
V0 0

0 0

21

τ α
. (4.53)

The voltage noise equivalent power tends to infinity as the applied voltage V I R0 0 0=  goes

to zero because the voltage noise dominates over the signal at low power.

If the voltage noise is dominated by Johnson noise in the thermometer, then the voltage

noise at zero frequency is given by

V k T RVN B(0) = 4 0 0 . (4.54)

If the voltage is dominated by independent phase slips of magnitude ∆ϕ , the voltage noise

at zero frequency is given by
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V VVN(0) = φ ϕ
π

0
0

∆
(4.55)

where φ0  is the flux quantum.  Sources of voltage noise, such as voltage noise due to phase

slips or vortex motion in a transition-edge sensor, may cause the voltage noise to be

significantly larger than the Johnson noise value [14].

The phonon noise equivalent power is independent of frequency, since the phonon noise

varies with frequency just as the signal does,

NEPPN PN B bath( ) ( ) ( )f P f k G T T
2 2

0 0
2 22= = + . (4.56)

The noise equivalent powers of the example microcalorimeter described in Section 4.15 are

plotted in Fig. 4.8.  The figure shows that the Johnson noise equivalent power increases at

frequencies greater than 1 2/ πτVN .  Amplifier noise, which is also plotted in the figure, will

be discussed in Section 4.13.

The energy resolution of a microcalorimeter, when optimally filtered [15], is given by an

integral of the noise equivalent power [4]

∆E
df

f
FWHM

NEP(
=















∞
−

∫2 35
4

20

1 2

.
)

/

. (4.57)

Upon integrating, we find that the energy resolution is given by

∆EFWHM VN VNNEP NEP= 2 35. (0) (0)τ . (4.58)
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This is the energy resolution of a microcalorimeter whose dominant sources of noise are

phonon noise and white voltage noise in the microcalorimeter.  It is the optimal energy

resolution obtainable from a microcalorimeter with a resistive thermometer.  In

Section 4.13, we present a more general result which includes amplifier noise and noise due

to Rth, which are often significant in real microcalorimeters.  In Section 4.14, we compare

the result in equation (4.58) to results obtained by other authors.

4.12  Bandwidth and energy resolution

In Section 4.11, we derived the resolution of the microcalorimeter in the limit that the

amplifier has infinite bandwidth.  We now consider a microcalorimeter in which the

measurement of the current through the thermometer are limited to a bandwidth

0 < <f fmax  by the gain of an amplifier or by a limited digital sampling rate.  As before,
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Figure 4.8.  A theoretical calculation of noise equivalent power (NEP) due to phonon noise, Johnson noise, and
amplifier noise for the example microcalorimeter described in Section 4.15.
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we assume a microcalorimeter in which phonon noise and white voltage noise are the

dominate sources of noise.  In this case, we find

∆ ∆E
df

f f f
E

f
FWHM

max 0NEP( arctan
max≅













 =∫

−

∞2 35
4 2

20

1 2

.
)

/

( / )

/

π
, (4.59)

 where

2
1

1
0

0
0

2

2
π

τ
f = +

VN

PN

VN

NEP

NEP

( )

( )
, (4.60)

and ∆E∞  is the resolution for infinite bandwidth given by (4.58).  The frequency f0  is the

lowest frequency such that NEP(f) NEP(0)
2 2

2≥ .

The bandwidth of the readout electronics fmax  must be as large as f0  or the measured

energy resolution of the microcalorimeter will not be within a factor 2  of the optimal

energy resolution (which is also called the theoretical limiting resolution).  This gives an

estimate of how fast electronic amplifiers must be in order for the microcalorimeter to

operate near the optimal resolution.

4.13  Amplifier noise and other noise

In our model, the effects of various forms of noise are included by adding terms to the

electrical circuit equation (4.41), the thermal circuit equation (4.42), and the linearized

equations for small perturbations (4.43).  We have included phonon noise and white voltage

noise in the microcalorimeter.  Other sources of noise such as the Johnson noise in the
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electrical circuit, amplifier noise, infrared photon noise, microphonics, and radio-frequency

interference can also be included, as can forms of voltage noise that are not white, such as

noise due to random magnetic flux motion in transition-edge sensors.  Note that the optimal

filter formalism is based on the assumption that noise appearing at any one frequency is

uncorrelated to noise at other frequencies.  Therefore, we only describe such uncorrelated

noise in this chapter.

If the electrical current δI  through the thermometer is measured, equation (4.49) relates the

NEP of all noise sources to the current fluctuations δI f .  However, if the voltage drop

across the thermometer is measured instead of the current, then equation (4.49) is only valid

for noise sources internal to the microcalorimeter, such as phonon noise P tPN ( )  and voltage

noise in the thermometer V tVN ( ) .  For voltage measurements, the NEP of noise sources

external to the microcalorimeter, such as noise V tRth ( )  due to shunt or bias resistors, must

be calculated using a different expression described at the end of this section.

The effects of amplifier noise can be included into our model analytically.  The amplifier

noise is expressed as current noise I famp ( ) .  Assuming the current through the

thermometer is measured, the noise equivalent power of the amplifier noise is

NEP f
C

A D f
I famp amp( )

( )
( )

2 0
2

2 2

2
= . (4.61)

In Section 4.10, we neglected any electrical noise sources outside the thermometer to

simplify the calculation.  However, this form of noise can be easily included by adding

another voltage noise term V tRth ( )  to equation (4.41).  A circuit with electronic noise in the

thermometer V tVN ( )  and electronic noise outside the thermometer V tRth ( )  is shown
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Fig. 4.5.  The voltage noise V tRth ( )  does not directly affect the power dissipated in the

microcalorimeter as V tVN ( )  does because V tRth ( )  does not directly affect the voltage drop

across the thermometer.  The voltage noise V tRth ( )  only affects the power dissipated in the

thermometer by affecting the current flow through the circuit.  Therefore, no additional

power term is added to equation (4.42).

Bias or shunt resistors in the electrical circuit are represented by the Thevenin equivalent

resistance Rth.  These resistors are a source of Johnson noise in the electrical circuit.  This

Johnson noise is represented by the voltage noise V tRth ( ) .  The voltage noise V tRth ( )  is in

series with Rth.  Therefore, the voltage noise term V tRth ( )  is added to the right side of

equation (4.41) to include this noise into the model.  We solve for the current noise by using

the methods of Section 4.10 but with V tRth ( )  included.  We find that the additional current

noise in the electrical circuit due to the Johnson noise V tRth ( )  is

( )δ π τI D f f
V f

L
f eff

Rth2 2 2 2
2

2
= +− −( ) (2 )

( )
, (4.62)

where V fRth ( )  is the Fourier transform of V tRth ( ) .  If the current through the thermometer

is measured, the noise equivalent power due to V fRth ( )  is

( )NEP ( NEP (0Rth Rth efff f) ) (2 )
2 2 2 21= + −π τ (4.63)

where

NEP (0Rth
eff

Rth) (0)=
′

C T

I R
V0 0

0 0

1

τ α
. (4.64)
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In the presence of amplifier noise and noise associated with Rth, the total noise equivalent

power in the microcalorimeter is

NEP NEP NEP NEP NEPVN PN amp Rth( ) ( ) ( ) ( ) ( )f f f f f
2 2 2 2 2= + + + . (4.65)

As before, the voltage noise is thermometer V tVN ( )  is assumed to be white.  We also

assume that the power of amplifier noise is independent of frequency, I f Iamp amp( ) ( )= 0 .

The noise equivalent power is given by

NEP( ) (2 ) (2 ) (2 )f a f a f a f
2

2
4

1
2

0= + +π π π (4.66)

where

a0
2= NEP(0)

a1
2 2 2 1 2 2 2= + + +− − − −(2 ) (0) (0)τ τ τ τetc el eff amp VN VNNEP NEP

+ τeff RthNEP
2 2

(0)

a2
2 1 1 2 2

= −− − − −( ) (0)τ τ τetc el eff ampNEP . (4.67)

Using equation (4.57), we obtain the energy resolution

∆E a a
a a

aFWHM = +




















2 35 11 0

2 0

1

1 4

.

/

. (4.68)
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Equation (4.68) gives the energy resolution of a microcalorimeter including amplifier noise

and noise due to bias or shunt resistors.  This resolution can be significantly poorer than the

resolution given by equation (4.58).

To obtain the optimal energy resolution, given by equation (4.58), the current fluctuations

due to amplifier noise I famp( )  must be small in comparison to the current fluctuations due

to the combined Johnson and phonon noise up to the frequency f0 , which was defined in

equation (4.60).  In terms of the noise equivalent power, this constraint is

NEP NEP NEPamp VN PN( ) ( ) ( )f f f
2 2 2<< + ,    for     f f< 0 . (4.69)

 For white amplifier noise this constraint is met under the following condition:

I
A D f

C
amp VN PNNEP NEP

2 2 2
2

0

0
2

2<< +



(0) (0)

( )
. (4.70)

White amplifier noise in the example microcalorimeter of Section 4.15 is illustrated in

Fig. 4.7.  The noise equivalent power of the example amplifier noise increases at

frequencies greater than 1 2/ ( )πτeff  as illustrated in Fig. 4.8.  In the example, the amplifier

noise is comparable to the Johnson noise and phonon noise at frequencies greater than

1 kHz.  Therefore, the energy resolution is affected, as will be described in Section 4.15.

The noise equivalent power NEPRth ( )f  of the Thevenin resistor should be small for

frequencies f f< 0  in order to obtain the optimal energy resolution given by equation

(4.58):

NEP NEP NEPRth VN PN( ) ( ) ( )f f f
2 2 2<< + ,    for     f f< 0 . (4.71)
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If the current through the thermometer is measured, the Thevenin equivalent resistance Rth

should be chosen to be small compared to the thermometer resistance R0  in order to

minimize noise (assuming that the Rth resistor is at the same temperatures as the

thermometer).  The noise can also be minimized by operating with bias or shunt resistors at

low temperature.

Noise due to Rth for the example microcalorimeter of Section 4.15 is shown in Fig. 4.7 and

Fig. 4.8.  In the example, the noise due to Rth dominates over other sources of noise in the

frequencies range of 2 kHz to 10 kHz.  Therefore, the energy resolution is significantly

poorer than the optimal energy resolution given by equation (4.58).

If the voltage drop across the thermometer is measured instead of the electrical current

through it, then the NEP of the noise associated with Rth is

( )NEP VRth VN eff( ) ( ) (2 )
( / ) ( )

f
C

AL
f i f

i f R L D f
= − + +

+
−0 1

0

1

2
τ π

π
. (7.72)

When measuring the voltage drop across the thermometer, the NEP is minimized by

choosing Rth to be much larger than R0 .

4.14  Discussion

The optimal resolution of a resistive microcalorimeter was given by equation (4.58), where

the current and temperature dependence of the thermistor have been taken into account

along with phonon noise and Johnson or other voltage noise.  Equation (4.59) describes

how the resolution is degraded by limited bandwidth fmax  of a measurement.  In equation

(4.68), we present the total energy resolution including white amplifier noise Iamp  and

noise from other resistors in the electrical circuit.
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If the bandwidth fmax  is much greater than f0   as defined in equation (4.60), and if the

amplifier noise Iamp  is small so that inequality (4.70) is satisfied, and if the noise

associated with Rth is small such that inequality (4.71) is satisfied, then the energy resolution

is approximately given by equation (4.58).  We now proceed to write the energy resolution

given by equation (4.58) in various limits and then compare our results to previous

calculations of the energy resolution of a microcalorimeter.

4.14.1  Phonon-noise limited microcalorimeter

In microcalorimeters, the voltage noise is often much less significant than the phonon noise

at low frequencies.  In the case that the noise equivalent power of the voltage noise at zero

frequency is much less than the noise equivalent power of the phonon noise at zero

frequency so that NEP NEP( ) ( )0 0≅ PN , the energy resolution in equation (4.58) is

approximated by

∆EFWHM VN VN PNNEP NEP≅ 2 35. (0) (0)τ . (4.73)

We now assume that the dominant source of voltage noise is the Johnson noise of the

resistive thermometer, which is the optimal case.  Using equations (4.53), (4.54), and (4.56)

and simplifying, we obtain

∆E
k T C T

T

G T

I R
FWHM

B bath≅
′

+2 35
4

1
2

0
2

0
2

0
2

0 0

0
2

0

.
α

. (4.74)

The above expression can be rewritten using the following expression:
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which is obtained from equation (4.4) by using G T P T( ) /= ∂ ∂c  and P P I Rc J= = 0
2

0 .  The

result of this substitution is

∆E
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′
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/

α
. (4.76)

This is the optimum energy resolution of a microcalorimeter whose only noise sources are

Johnson noise of the thermometer and phonon noise, where the Johnson noise is much less

than phonon noise at low frequencies.  This approximation gives the energy resolution of a

microcalorimeter in terms of five parameters, T0 , Tbath , C0 , ′α , and N.  From equation

(4.76), we see that energy resolution of a microcalorimeter may be less than the energy

fluctuations of a bolometer in thermodynamic equilibrium, 2 35 0
2

0. k T CB , which is in

agreement with previous theory [1,4].

In the limit that the bath temperature Tbath  is much smaller than T0 , equation (4.76)

reduces to

∆E
k T C N

FWHM
B≅

′
2 35

4

2
0

2
0.

α
. (4.77)

The optimal resolution of a microcalorimeter in equation (4.77) is similar to the result

obtained by Irwin [1] for the special case of a voltage-biased transition-edge sensor in

extreme electrothermal feedback where the only noise sources are Johnson noise and
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phonon noise.  However, the ′α  term is defined differently than α was by Irwin and others.

We describe the difference in definition in more detail below.

In the limit that T T0 − bath  is small, we can make the approximation that

1 22
0

2+ ≅T Tbath /  and 1 10 0− ≅ −T T N T TN N
bath bath/ ( / ) .  In this approximation,

equation (4.76) reduces to

∆E
k T C T

T
FWHM

B bath≅
′

−








−

2 35
4

10
2

0

0

1/2

.
α

. (4.78)

Equation (4.78) is similar to the result obtained by Irwin [1] for a current-biased or voltage-

biased transition-edge sensor with negligible feedback, where the only sources of noise are

Johnson noise and phonon noise.

There are some important differences between our result and the previous results by Irwin.

Because our derivation is more general, results given in equations (4.58) and (4.76) apply

no matter whether the feedback is extreme, strong, weak, or negligible and apply for both

positive and negative ′α .  The microcalorimeter may be current or voltage biased.  Our

model includes effects of the inductance L.  The current dependence of the resistive

thermometer is included in our model and is represented by the β parameter.  The

temperature dependence of the heat capacity is also included and is represented by the γ

parameter.  The coupling between the electrical and thermal circuits is explicitly represented

by the τetc  parameter.  Our theory resembles the previous theory of Irwin only in the limit

that L, β and γ  are small.  Also, the form of our result is very different if the Johnson noise

is not small compared to the phonon noise at low frequencies or if other forms of noise are

included.
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4.14.2  Voltage-noise limited microcalorimeter

As an example of how our results can differ from previous results, we consider the case in

which voltage noise is much larger than the phonon noise at all frequencies so that

NEP(0) NEP (0)VN≅ .  This may apply when a microcalorimeter is operated at low power

or when ′α  is small.  In this case, the energy resolution in equation (4.58)  is approximated

by

∆EFWHM VN VNNEP≅ 2 35
2

. (0)τ . (4.79)

We assume, as before, that the voltage noise is dominated by Johnson noise in the

thermometer.  We then use equations (4.53) and (4.54) to obtain

∆E
k T C C T

I R
FWHM

B

VN

≅
′

2 35
4 0

2
0

2
0 0

0
2

0

. .
α τ

(4.80)

Note that the approximation in equation (4.80) is not valid in the limit that τVN  is so large

that the phonon noise is larger than the voltage noise.  Equation (4.80) is the energy

resolution of a microcalorimeter whose dominant source of noise at all frequencies is

Johnson noise from the thermometer.  When equation (4.80) is a valid approximation, the

energy resolution EFWHM  in equation (4.80) is larger (worse) than the energy resolution

given in equation (4.79).

4.14.3  Resolution limited by and phonon noise and voltage noise

A more general but more complex expression can be similarly obtained from equation

(4.58), without using the approximations NEP NEP( ) ( )0 0≅ PN  or

NEP NEP(0) (0)≅ VN .  This expression is
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∆EFWHM VN VN VN PNNEP NEP NEP= +2 35
2 2

. (0) (0) (0)τ . (4.81)

Equation (4.81) is just a combination of equation (4.73) and equation (4.79) with the terms

in the radical added in quadrature.  We now assume as before that the voltage noise is due

to Johnson noise in the thermometer.  We substitute into equation (4.81) using equations

(4.73), (4.74), (4.79) and (4.80).  We then obtain
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, (4.82)

which is the resolution of a microcalorimeter limited by phonon noise and Johnson Noise

As previously described, the thermometer sensitivity parameter ′α  is defined as a partial

derivative to be evaluated at the operating point with the current held fixed, whereas in

previous theory [1,3,4], the sensitivity α is defined as a total derivative.  For most

thermometers, including all transition-edge sensors, the value of ′α  at the operating point is

smaller than α measured at low current.  Therefore, measurements of α at lower current

overestimate the value of ′α  at the operating point.  For example, in one of our devices, we

measured resistance versus temperature at a constant voltage V0=20 nV.  From this

measurement, we obtained α = 540 at a bias current of I0=100 nA.  However, a much lower

sensitivity α ≅ 100  was inferred from the height of measured pulses at higher current I0=18

µA.

In this section, we described the energy resolution of a microcalorimeter in several special

cases.  However, in the general case of a microcalorimeter with phonon noise and white

voltage noise, equation (4.58) should be used to compute the optimal energy resolution.  We
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will use equation (4.58) to calculate the resolution of an example microcalorimeter in

Section 4.15.

4.15  Example of a TES microcalorimeter

We will now use our general microcalorimeter theory to model a specific device as an

illustration of how the theory is applied.  We model a hypothetical device that closely

resembles microcalorimeters which we have fabricated and tested in our laboratory.

Descriptions of actual devices are avoided because consideration of experimental

uncertainties in the parameters and various noise sources would complicate the discussion.

We model an x-ray detector based on transition-edge-sensor (TES) technology.  The

detector layout is shown in Fig. 4.9.  It is a thin film device which consists of a photon

absorber made of copper coupled to a small TES thermometer.  The absorber dimensions

are 250 µm by 250 µm by 3 µm.  The absorber dominates the heat capacity of the

microcalorimeter.  At an operating temperature of 120 mK, its heat capacity is C0=2.2 

pJ/K.  The parameter γ=1 because it is a normal metal.

The TES is a thin film of superconductor biased in the phase transition between the

superconducting and normal states.  In the phase transition, the resistance R I T( , )  increases

with increasing temperature T and increasing current I from zero resistance up to the normal

metal resistance RN .  Fig. 4.10 is an illustration of the phase transition.  The ′α and β

parameters of a TES depend on how it is fabricated and upon the operating temperature T0

and the bias current I0 .  We have made TES thermometers with ′α  as large as several

thousand, but ′α  equals 100 is more typical at bias conditions.  We estimate β ≅ 3 from

measurements of one device.
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The microcalorimeter is deposited on a silicon substrate which suspends a silicon nitride

membrane.  The substrate functions as the microcalorimeter's cold bath with temperature

Tbath .  Most of the microcalorimeter lies on the membrane, which thermally decouples it

from the bath.  A small part of the device lies directly on top of the silicon substrate,

providing a small thermal coupling G0 .  At 120 mK, this thermal coupling is limited by

electron-phonon interaction which implies N=5.  The thermal conductivity within the

microcalorimeter is large compared to G0 .  Therefore, the whole microcalorimeter acts as

one thermal element with temperature T.

 The model parameters for the described microcalorimeter are given in Table 4.1.  We have

taken the values of G0 , I0 , R0 , Rth, and Tbath  from actual measurements of a TES

microcalorimeter that we fabricated.  (Note that the parameter G0  is related to the other

parameters by equation (4.75).  The measured value of G0  given in Table 4.1 is 24% less

AlSi

Cu

V+

Ground

membrane

TES

Top
View

Side
View

250 mH

3 mH

x ray

TES

Cu

Figure 4.9.  A model microcalorimeter closely resembling devices fabricated and tested in our laboratory.  The device
consists of a copper x-ray absorber that is well coupled to a small transition-edge-sensor (TES) thermometer.  Most of
the device is on a thin membrane which thermally decouples it from the silicon substrate.  The bonding pads which
connect the thermometer to the electrical bias circuit are also shown.  X rays absorbed in the absorber cause
temperature pulses which are measured by the thermometer.
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than an estimate of G0  that is obtained from equation (4.75) due to experimental

uncertainty in the parameters G0 , I0 , R0 , N, T0 , and Tbath .)  The values were obtained

from measurements of a microcalorimeter that had TES with a phase transition at Tc=123 

mK.  The width of the transition varied from 0.25 mK at a bias current I of 0.1 µA to

several millikelvin wide at a bias current I=18 µA.  The value ′ =α 100  is a rough estimate

for that device based on measurements of pulse amplitudes and based on the assumption

that β ≅ 3.  In our experiments, the inductance L is about 0.3 µH.  In our example, we

choose L=10 µH so that the rise time is more easily visible in our figures.

 The electrical circuit of the example microcalorimeter is shown in Fig 4.2.  In our example,

the bias voltage is Vb=1.2 V, the shunt resistance is Rs=20 mΩ, and bias resistor is

Rb=11 kΩ.  Hence, the Thevenin equivalent voltage is Vth=2.2 µV and the Thevenin

equivalent resistance is Rth=20 mΩ.  The current through the inductor L is measured by a dc

SQUID.  In our experiments, the current noise from Rs is larger than the noise due to Rb

because the resistor Rs is at temperature Ts=2 K.  Therefore, its Johnson noise voltage is

V f k R TRth b s s  pV / Hz( ) .= =4 14 .

The operating point of a TES microcalorimeter in the superconducting to normal metal

phase transition is illustrated in Fig. 4.10.  The operating point is determined by constraints

described in Section 4.3.  As shown in the figure, the operating point lies on the transition

between the superconducting and normal states.  The operating temperature for the example

device was estimated to be T0=120 mK.

When a photon is absorbed in the microcalorimeter, its energy is rapidly thermalized in the

absorber and thermometer electrons, and the TES thermometer measures the increase in

electron temperature.  The response of the microcalorimeter is described by the matrix

constants which are computed from the basic parameters in Table 4.1 as described in
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Section 4.4.  The matrix constants are given in Table 4.2.  We note that the electronic time

constant τel  is smaller than the L/R time constant due to β being positive.  The effective

thermal time constant τeff  is positive and is less than τth  because strong Joule heating is

causing pulse shortening.

At this point, we can determine that the microcalorimeter is stable and not oscillatory using

inequalities (4.23), (4.24), and (4.25).  However, if the inductance L were three times larger,

then the microcalorimeter would be oscillatory due to current bias at high frequencies.  If

the inductance L were ten times larger, the microcalorimeter would be unstable.

We can compute pulse shape as described in Section 4.5 from the values in Table 4.2.  The

pulse shape parameters are given in Table 4.3.  We note that the rise time τ r  is similar to

electrical time constant τel .  Using the values in Table 4.3, we now compute the response

of the system to a 6 keV x-ray absorption.  The resulting current pulse is plotted in

Fig. 4.11, which shows that the absorption event causes a temporary decrease in current I.

The associated temperature pulse is plotted in Fig. 4.12.  A plot of current vs. temperature is

I

T

Equilibrium point

Superconducting
state

Normal metal state

Curve of constant
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Figure 4.10.  An illustration of an operating point of a TES microcalorimeter.  The point where the thermal equilibrium
curve, which is described by equation (4.4), intersects the curve of constant resistance R0, which is described by
equation (4.5), is the operating point.  The operating point lies in the phase transition between the superconducting and
normal metal states.
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shown in Fig. 4.3.  An illustration of the pulse in the context of the superconductor to

normal phase transition is shown in Fig. 4.13.  As shown in Fig. 4.3 and Fig. 4.12, the

absorption event causes the temperature to rise by about 4 mK.  After the absorption event,

the temperature continues to rise during the rise time of the current pulse due to increased

Joule heating as shown in Fig. 4.12.  The additional Joule heating occurs because the

inductance L provides a current bias at high frequencies.  The current and temperature

return to equilibrium during the decay of the current pulse.

Section 4.10, Section 4.11 and Section 4.13 describe how to compute various noise sources

in the microcalorimeter.  We compute the phonon noise, Johnson noise due to the resistance

R0  of the TES, amplifier noise, and noise due to the shunt resistor.  Other sources of noise

in the electronic bias circuit are assumed to be negligible.  The phonon noise and Johnson

noise are computed from the parameters in Tables 4.1 and 4.2.  The amplifier noise is
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Figure 4.11.  A current pulse in the example TES microcalorimeter.  In the example, the current drops in response to
the absorption of an 6 keV x ray.  The current returns to equilibrium in about a millisecond.  Note that the inductance
chosen for this example is much larger than actual inductances used in order to better illustrate the rise time.
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assumed to be Iamp  pA / Hz= 2 , which is typical of large-bandwidth low-temperature

dc SQUIDs.  A plot of current noise from these sources is given in Fig. 4.7.  The phonon

noise dominates at low frequencies.  It rolls off as the gain of the microcalorimeter

decreases with increasing frequency.  In this microcalorimeter, the phonon noise begins

rolling of at frequency 1 2/ ( )πτeff

At low frequencies, Johnson noise in the microcalorimeter is suppressed due to the two

Johnson noise terms partially canceling as described in Section 4.10  The cancellation of the

Johnson noise is most significant at low frequencies because electrothermal feedback is

strongest at low frequencies.  The Johnson noise begins to increase at frequency

1 / (2 )πτVN , but then decreases at frequencies greater than 1 / (2 )πτel  due to inductance L

in the electrical circuit.  For the modeled microcalorimeter, the phonon noise is larger than
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Figure 4.12.  A temperature pulse in the example TES microcalorimeter.  In the example, the temperature is increased
by over 0.4 mK by the absorption of a 6 keV x ray.  The temperature continues to rise after the absorption due to
increased Joule heating.  This occurs because the inductance in the circuit provides a current bias at high frequencies.
The temperature is returned to equilibrium in about a millisecond.  Note that the inductance chosen for this example is
much larger than actual inductances used in order to better illustrate the rise time.
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the Johnson noise at low frequency.  If the Johnson noise were larger than the phonon noise,

the energy resolution would be significantly degraded.

Noise equivalent powers of various noise sources are described in Sections 4.11 and Section

4.13.  The noise equivalent powers of the noise sources in the example microcalorimeter are

shown in Fig. 4.8.  At very high frequencies, the gain of the microcalorimeter is small.

Therefore, the noise equivalent power of the amplifier noise and Johnson noise are large at

high frequencies.

The time constant τVN  and the noise equivalent powers at zero frequency are given in

Table 4.4.  These were computed using the data from Tables 4.1 and 4.2.  Using these

values and equation (4.58), we compute the best possible energy resolution obtainable from

the example microcalorimeter: EFWHM=3.0 eV.  However, the energy resolution may be

worse if a low pass filter were applied to the device.  Energy resolution is significantly

degraded if the band pass is less than f0 4700=  Hz  as described in Section 4.12  Amplifier

noise also degrades the resolution.  Using equation (4.70), we find that the amplifier noise

should be significantly less than 2.1 pA / Hz  in order to avoid degradation of the energy

resolution.  Since the amplifier noise is 2.0 pA / Hz , the best possible energy resolution

with this amplifier noise is EFWHM=3.8 eV.  This result is obtained from equation (4.68) by
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Fig. 4.13.  An illustration of a pulse from the example TES microcalorimeter.  The directions of the eigenvectors x1 and
x2  from equations (4.20) and (4.21) are also plotted.
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including amplifier noise but neglecting noise VRth  from the shunt resistor Rs .  The noise

due to the shunt resistor Rs  is shown Fig. 4.7 and Fig. 4.8.  It is the dominant noise source

in the frequency range of 2 kHz to 10 kHz.  Therefore, the noise VRth  significantly affects

the energy resolution of the example microcalorimeter.  Using equation (4.68), we find that

the energy resolution of the example microcalorimeter including amplifier noise and shunt

resistor noise is EFWHM=5.2 eV.

Table 4.1.  The basic parameters for the example microcalorimeter.  The parameters are chosen to model a hypothetical
TES microcalorimeter illustrated in Fig. 4.9.  The model microcalorimeter closely resembles actual microcalorimeters
fabricated and tested.  A hypothetical device is used in order to simplify the exposition of the theory.

Parameter Value
′α 100

β 3
γ 1
C0 2 2.  pJ / K

G0 18.  nW / K

I0 18 Aµ
L 10 Hµ
N 5
R0 100 mΩ

Rs , Rth 20 mΩ
T0 120 mK

Tbath 100 mK

Ts 2.0 K
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Table 4.2.  The basic time constants and cross terms in the linear model.

Table 4.3.  Parameters that describe the shape of the pulses in the microcalorimeter.

Constant Value Equation
L R Rth/ ( )+ 0 83 µs

τel 24 µs 4.7

C G0 0/ 1 2.  ms

τ th 1 4.  ms 4.10

τJ 82 µs 4.12

τeff 87 µs 4.9

A 150 As-1 -1K 4.14

B 4.1 10  Ks A6 -1 -1× 4.15

τetc 40 µs 4.16

Constant Value Equation
τ r 40 µs 4.18

τd 190 µs 4.19

E 6 keV
∆T E C≈ / 0 0.44 mK
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Table 4.4.  The parameters that describe the noise in the model microcalorimeter

4.16  Summary of the simple microcalorimeter theory

The microcalorimeter theory is a comprehensive dynamical model of resistive

microcalorimeters including both temperature and current dependencies of the thermistor.

The model describes the behavior of a wide variety of microcalorimeters including

semiconductor thermistors ( )′ <α 0  and transition-edge sensors ( )′ >α 0 .  Various bias

conditions are described including current bias, voltage bias, and either weak or strong

electrothermal feedback.  The model describes the behavior of microcalorimeters in terms

of eleven independent parameters:  ′α , β, γ , C0 , I0 , L, N, R0 , Rth, T0 , and Tbath .  Using

the model, we determined constraints on the stability of microcalorimeters, and in equation

(4.58) we present a general expression for the theoretical limiting energy resolution.

Because the model explicitly accounts for both temperature and current fluctuations, the

effects of various forms of noise were readily incorporated.  In equation (4.68), we present

an expression for the total energy resolution of microcalorimeter including amplifier noise

and noise from bias or shunt resistors.  The formalism is simpler and more general than the

formalism in previous models.  Therefore, the model can be easily expanded to describe

composite bolometers where the absorber and sensor are treated as separate elements.

Because the model is simple and comprehensive, it adds insight.  The insight provided by

Constant Value Equation
NEPJN(0) 1 0 10 18. × −  W Hz-1/2 4.53, 4.54

NEPPN(0) 35 10 17. × −  W Hz-1/2 4.56

NEPAMP(0) 3 9 10 18. × −  W Hz-1/2 4.61

NEPRth(0) 2 5 10 17. × −  W Hz-1/2 4.64

τ VN 1 2.  ms 4.47
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the model has assisted us in the design of our microcalorimeters and in the interpretation of

our data.

4.17  Extension of the theory to more complicated calorimeters

The microcalorimeter theory can be extended to more complicated microcalorimeters.  As

an example, consider the calorimeter illustrated in Fig. 4.14.  In this case, the resistive

thermometer has temperature T1 and the absorber has temperature T2.  This type of

microcalorimeter is described by three independent variables: the current I, and the two

temperatures T1 and T2.  (Previous authors have described this case without including the

current I as a dynamic variable [9].)  The thermometer has heat capacity C1 and the absorber

has heat capacity C2.  The thermal conductance G1 couples the thermometer to the bath.

The absorber is coupled the absorber by thermal conductance G2.  (This model resembles

some of the gamma-ray calorimeters we have fabricated.)

The electrical circuit is still the same:

L
dI

dt
V I R R I T= − +th th( ( , ))1 , (4.83)

where the terms in the equation are defined as described in Section 4.2.1.  The thermal

circuit is described by two equations.  One equation describes the rate of change of the

temperature of the thermometer:

C T
dT

dt
P I T P T T P T T1 1

1
1 1 1( ) ( , ) ( , ) ( , )= − +J c bath at 2 , (4.84)
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where the Joule heating power PJ and the cooling power Pc into the bath are as described in

Section 4.2.2.  The heat that flows between the absorber and the thermometers is described

by the power Pat.

The second thermal equation describes the rate of change of the temperature in the absorber:

C T
dT

dt
P T T P t2 2 1 2( ) ( , ) ( )= − +at abs , (4.85)

where Pabs(t) is the power due to the absorption events in the absorber, as was described in

Section 4.2.2.

The equations are linearized around equilibrium as was done for a simple microcalorimeter

in Section 4.4.  The linearized equations are

d

dt

I

T

T

B

I

T

T P t C

δ
δ
δ

τ
τ τ
τ τ

δ
δ
δ

1

2

1

2 2

0

0

















=
−

−

































+
















el

11 21

12 22 abs
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, (4.86)

where A, B, andτel , are as defined in Section 4.4.  The thermal time constants are

τ ∂ ∂11 c at= − +( ) /P P T1 , τ ∂ ∂21 at= P T/ 1 , τ ∂ ∂12 at= − P T/ 1  and τ ∂ ∂2 2= − P Tat / .  The

eigenvalues and eigenvectors of the matrix in equation (4.86) are used to find the response

of the microcalorimeter to an absorption event as was described for a simple

microcalorimeter in Section 4.5.  The Fourier transform of equation (4.86) into frequency f

is
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abs( ) /

, (4.87)



110

where

M = −
− −

−
− −

















τ π
τ π τ

τ τ π
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12 22
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0
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2
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B f

f

. (4.88)

The solution is
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−M

abs( ) /

, (4.89)

where M-1 is the inverse of matrix M.  Noise terms are included into the linear model as

was done for the simple microcalorimeter in Section 4.10.  The solution with noise sources

P tabs( )

P I TJ 1( , ) C1

C2

G2

G1

P (T T )12 1 2,

Thermometer

Absorber

Bath

P (T)c
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Figure 4.14  A two-element calorimeter.  The thermometer is coupled to the cold bath by a thermal conductance G1.
The thermometer is coupled to the absorber by a thermal conductance G2.  The conductance G2 causes additional
phonon noise in the calorimeter.  The effects of the phonon noise from G2 cancel out at low frequencies.  This phonon
noise adversely affects the energy resolution of the calorimeter unless the conductivity G2 is very large.
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, (4.90)

where VVN represents voltage fluctuations due to electronic noise in the thermometer, PPN1

is the phonon noise along G1, and PPN2 is the phonon noise along G2.

The phonon noise PPN2 affects both temperature T1 of the thermometer and temperature T2

of the absorber by randomly moving energy back and forth between the absorber and the

thermometer.  However the thermal coupling G2 tends to equalize the two temperatures.  In

the limit that G2 is large compared to ′α G1, the absorber and thermometer are well coupled.

In this case, the effects of PPN2 on the two temperatures cancel.  The calorimeter is then

equivalent to the simple calorimeter described in the previous sections of this chapter.

If G2 is not large compared to ′α G1, then the phonon noise PPN2 produces additional noise

that degrades the energy resolution of the calorimeter.  At high frequencies (such that 2πf is

much greater than G2/C2), the thermometer and absorber are decoupled.  (This is the

bolometric mode.)  In this frequency range, the thermometer measures phonon noise from

both PPN1 and PPN2.  The calorimeter acts like a simple calorimeter with heat capacity C1

and thermal coupling G1+G2, except that the signal from Pabs(t) in the absorber is not well

coupled into the thermometer at these frequencies.  (I call this the small calorimeter limit

because the temperature fluctuations measured by the thermometer depend on capacity C1

only).

For low frequencies (such that 2πf is much less than G2/C2), the absorber is well coupled to

the thermometer. (This is the calorimetric mode.)  The calorimeter acts like a simple

calorimeter with heat capacity C1+C2 and has phonon noise due to PPN1 only.  (I often refer
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to the low frequency limit as the big calorimeter limit because at low frequencies the

fluctuation in the temperature measured by thermometer depend on the combined heat

capacities of the absorber and the thermometer.)

The noise equivalent power (NEP) of the various noise sources is easily calculable from

equation (4.90).  For example, the NEP of the phonon noise PPN2 is

|( ( ) / ( ) )|| |C C P2
1

12 1
1

13 1M M− − − PN2 .  The NEP of all the noise sources can be computed

and inserted into equation (4.57) to calculate the optimal energy resolution.
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C h a p t e r  5

FABRICATION

5.1  Introduction to fabrication

Much of our research has been toward the development of transition-edge sensor

microcalorimeters for the measurement of x-rays.  An illustration of a prototypical device is

given in Fig. 1.6.  The microcalorimeter consists of a thin-film x-ray absorber well coupled

to a thin-film TES thermometer.  The device is deposited on a silicon substrate with a

suspended membrane.  Much of the microcalorimeter lies on top of the membrane so that it

is thermally decoupled from the substrate when in operation.  In this chapter, we discuss the

fabrication of these devices.  We describe how the thin membrane is fabricated and how

metal films are deposited and patterned into the components of our microcalorimeters.

5.2  Fabrication of substrates for our x-ray microcalorimeters

We fabricated special substrates that suspend thin membranes for use with our

microcalorimeters, shown in Fig. 5.1.  To make these substrates, we begin with a four-inch

diameter silicon wafer.  A 05. µm  thick layer of silicon nitride is deposited on all sides of

the wafer.  We remove an array of squares in the silicon nitride on the backside of the wafer

by use of a reactive ion etch.  The wafer is then chemically etched from the backside with a

potassium hydroxide solution.  The solution etches silicon, but does not significantly etch

the silicon nitride.  When the wafers are placed in the etching solution, the silicon is etched

away in the areas not covered by silicon nitride.  The potassium hydroxide solution is
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allowed to etch the silicon all the way through to the front side of the wafer, leaving a thin

membrane of silicon nitride suspended across the removed sections of silicon.

The silicon crystal is more resistant to etching by potassium hydroxide in the (1, 1, 1) lattice

directions than in other directions.  The etch preferentially removes silicon in other

directions leaving surfaces perpendicular to the (1, 1, 1) lattice directions.  The (1, 1, 1)

four inch silicon wafer

dicing lines

top
view

side
view

membranes

silicon

silicon nitride

Figure 5.1.  Our 1 inch by ¼ inch substrates are fabricated by etching and dicing a four-inch silicon wafer.
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directions are 54.74 degrees from vertical.  Thus, the cavities below the membranes slope in

by 54.74 degrees above horizontal.  After the etch, the four inch wafers with suspended

membranes are then diced into one inch by one quarter inch wafers.  Each one inch by one

quarter inch wafer suspends three silicon nitride membranes as shown in Fig. 5.1.  Each

membrane has dimensions 1.1 mm by 1.1 mm.

Our microcalorimeters are fabricated on top of the one-inch substrates with membranes in

our thin film deposition system, which is illustrated in Fig. 5.2.  The system was constructed

to a large extent by Harrie Netel [1], a fellow graduate student in the cryogenic detector

group at Lawrence Livermore National Laboratory.  The thin-film deposition system has a

load lock for loading samples, and a main chamber for sputtering and ion gunning.  The

load lock is brought up to atmospheric pressure when samples are loaded into it.  It is

pumped down to about 10-7 Torr otherwise.  The main chamber is kept at about 10-9 Torr,

except during sputtering, ion gunning, or when a sample is being transferred between the

load lock and the main chamber.

A precisely machined sample holder, which we call the Ferrari, is shown in Fig. 5.3.  When

a device is to be fabricated, a substrate is placed in the Ferrari, along with a shadow mask if

one is used.  The Ferrari holds the mask firmly in position, pressed directly onto the surface

of the substrate.  The Ferrari is placed in the load lock.  After the load lock is pumped down,

a gate valve which separates the load lock from the main chamber is opened and the Ferrari

is transferred into position for sputtering or ion milling in the main chamber.  The gate

valve is closed and the main chamber is pumped down before sputtering or ion milling

begins.
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5.3 Deposition and patterning of thin films

5.3.1  Sputtering

The main chamber of our thin-film deposition system has three sputter guns, which are used

to deposit the metal films that comprise our microcalorimeters.  One of the guns has a

copper target.  A second gun has aluminum.  The third (tantalum) sputter gun is not used for

fabrication of the x-ray microcalorimeters described in this thesis.  For sputtering, argon gas

is supplied to the system so that the pressure is 10 mTorr of argon.  In operation, a sputter

gun creates an argon plasma above the sputter target.  The sputter guns are biased with a

voltage of several hundred volts, which causes a current of argon ions which impact the

sputter targets.  The ion impacts sputter metal off the surface of the targets.  The sputtered

metal atoms and molecules radiate upward from the targets and coat surfaces they impinge

upon including the exposed surface of the substrate, thereby forming the metal layers of our

microcalorimeters.  The thickness of the sputtered films is controlled by the electrical power

applied to the argon plasma and by the duration the sputtering.  (Usually, the power is from

50 W to 200 W, and the duration of sputtering several minutes, depending on the material

Figure 5.2  A schematic of our thin-film deposition system.  Various gate valves are labeled V1 though V7.  The
pressure in the system is measured by an number of ion gauges and convectron gauges.  Samples are loaded into the
load lock and then transferred to the main chamber where films are deposited.
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sputtered and the thickness of desired film.)

5.3.2  Shadow masking

Shadow masks are thin metal masks which have patterns of holes cut in them corresponding

the two dimensional shape of the films to be deposited on the substrate.  These masks can

pattern structures as small as about 50 mµ .  A shadow mask can have up to eight different

patterns for our one inch by one quarter inch substrates.  A shadow mask is held just in front

of the substrate by the Ferrari, as shown in Fig. 5.3.  A shadow mask manipulator, located in

the load lock, allows an operator to select the shadow mask pattern to be deposited.  The

position of the shadow mask can be changed in vacuum, as can the choice of metal to be

sputtered, so that several different patterns made of different metals can be deposited

without breaking vacuum.

A major disadvantage of shadow mask technology for us is that patterns formed by

sputtering through shadow masks are somewhat poorly defined because the sputter target is

not a point source.  The edges of films sputtered through our shadow mask system are

sloped, and about ten microns wide (measured from the 90% to 10% the film thickness).

Shadow masking is used to form the absorber and bonding pads of our microcalorimeters

because these structures need not have particularly sharp edges

5.3.3  Lift-off

We use a photolithographic lift-off process to obtain films with much sharper edges.  In this

process, a substrate is coated with photoresist in a clean room and baked so that the

photoresist forms a solid layer on the top surface of the substrate.  An ultraviolet light and a

photomask are used to expose a pattern in the photoresist.  The exposed pattern of

photoresist is removed, leaving the exposed surface of the substrate where the photo resist

was removed.  This process produces a mask of photoresist on the surface of the substrate.

The substrate with photoresist mask is placed in the thin-film deposition system and
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sputtered without a shadow mask.  The sputtered films coat the photoresist layer and the

exposed sections of substrate.  After the sputtering is completed, the substrate is removed

from the thin-film deposition system, and it is placed in acetone.  The acetone dissolves the

photoresist.  The metal that is deposited on top of the photoresist flakes off, but the metal

that is deposited directly on the substrate sticks to the surface.  Thus, the lift-off process

leaves a film on the surface of the substrate with the same shape as the pattern on the

photomask.  Films that we pattern by lift-off have nearly vertical edges.  We have found that

transition-edge sensors with sharper edges have narrower transitions—and are more

sensitive thermometers.  Therefore, we often use lift-off to pattern our transition-edge

sensors.

5.3.4  Ion milling

The thin-film deposition system has an ion gun in the main chamber, which is used to

remove oxidization and etch the surfaces of samples.  The ion gun is supplied with 10

mTorr of argon when operated.  The ion gun creates an argon plasma, and it accelerates

argon ions at the surface of the sample to be etched.  The argon ions impact the sample,

removing atoms from the surface.  We often use the ion gun to remove oxidation from the

surface of films that have become oxidized due to exposure to the atmosphere.

5.3.5  Thermal evaporation

In the early stages of our transition-edge sensor work, we used thermal evaporation with a

shadow mask to fabricate devices.  Our thermal evaporation system, consisted of a

stainless-steel bell jar which could be pumped down to 5 × 10-7 Torr, a tungsten boat or wire

used to heat metal to its boiling point, and a fixture which held the substrate and shadow

mask about a quarter of a meter above the substrate.  The source of metal is much smaller

than a sputter target and is much further away.  Therefore, thermal evaporation, when used

in conjunction with a shadow mask, produces films with shaper edges than sputtering

through a shadow mask does. (However, the lift-off process produces very well defined
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films in either a sputter system or thermal evaporator).  Others have produced very good

transition-edge sensors using this thermal evaporation [2].  However, our group abandoned

thermal evaporation in favor of our much better equipped and cleaner thin-film deposition

system, because we were not able to sufficiently control the purity and thickness of our

films in our old thermal evaporator.

5.4  Fabrication of our transition-edge sensor microcalorimeters

We have patterned transition-edge sensors in a number of ways in our lab.  We have used

sputtering, thermal evaporation, shadow mask, and lift-off.  We have even patterned

transition-edge sensors by cutting deposited films with a razor to get sharp edges.  All of

these methods have produced working transition-edge sensors.  However, our most

reproducible microcalorimeters were produced using a combination of sputtering, shadow

mask, and lift-off.  We will describe microcalorimeters fabricated in this way below.

We designed transition-edge sensor microcalorimeters for measurement of x rays based on

the design criteria described in Chapter 3.  The heat capacity is small.  The thermal

conductivity within the microcalorimeter is large.  The microcalorimeter is decoupled from

the bath.  The phase transition is narrow.  And, the devices have good absorption efficiency

for photon in the 100 eV to 10 keV energy range.
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Figure 5.3.  Sputtering in our thin-film deposition system.  Samples may be placed in the Ferrari along with a shadow
mask for pattering.  The Ferrari is lowered into position above one of the sputter guns, and thin films are sputtered onto
the substrate when the shutter is open.
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The microcalorimeters are deposited on top of a membrane substrate which was described

in the previous section.  They consist of four metal layers: a copper absorber layer, an

aluminum wiring layer, and a copper and aluminum bilayer that forms the transition-edge

sensor.

5.4.1  The “Sunflower” shadow mask

The microcalorimeters are fabricated using the shadow mask pattern shown in Fig. 5.4.  The

shadow mask pattern, named “Sunflower”, is designed so that four microcalorimeters are

deposited on each of the three membranes of a one inch by one fourth in silicon substrate.

The microcalorimeters are deposited symmetrically on each membrane in a pattern

resembling a sunflower—hence the name of the pattern.  The devices are deposited in a

symmetrical pattern so that even if the mask is misaligned by 100 microns with respect to

the position of the membranes, at least two of the microcalorimeters will be deposited on

each membrane.

The mask has eight different positions, numbered 1 through 8 from left to right.  Positions

1 2 3 4 5 6 7 8Position:

Figure 5.4.  The mask used to pattern our devices.  This mask is used for both sputtering and photolithography.  The
different patterns on the mask correspond to absorbers, TES thermometers, contact pads, labels for identification and
alignment, and strips for measuring residual resistance ratios (RRR).  The dimensions in the figure are given in inches.
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1,2,5, and 8 have patterns for various shapes of absorbers.  Position 4, is the mask position

that is used to form transition-edge sensors.  The rectangles in position 4 correspond to

transition-edge sensors of widths of 50, 100, and 150 microns.  The remaining mask

positions are used in patterning the aluminum wiring layer, and they set the length of the

transition-edge sensors.  Transition-edge sensors of length 150, 300, or 600 microns are

produced by using mask position 7,6, or 3, respectively, for the wiring layer.  The choice of

absorber mask and wiring layer mask determine the two dimensional shape of the

microcalorimeters that are produced.  The thickness of the films is controlled by the

duration and power of the sputtering in the thin-film deposition system.

There are some additional features on the mask besides the wiring layer, absorber, and

transition-edge sensor patterns.  In the space between the microcalorimeters, long thin strips

of metal are deposited along with pads for wire bonding.  These are used to check the purity

of the metal films that are deposited.  An estimate of film purity is obtained from a

measurement of the residual resistance ratio (RRR) of these films.  Alignment marks also

appear in the sides of the mask pattern.  They are used to measure the alignment of the

various layer with each other after fabrication.  Next to each microcalorimeter’s wire

bonding pads, there are several small squares.  The squares create labels that identify and

number the microcalorimeters so that they can be easily distinguished from each other.

5.4.2  The fabrication of “Sunflower” microcalorimeters

The deposition process is outlined in Fig. 5.5 and Fig. 5.6.  A ′′ × ′′1 0 25.  silicon substrate

with silicon nitride membranes is cleaned, and then this sample is loaded into the Ferrari,

with a shadow mask.  The clean substrate is illustrated in Fig 5.5a and Fig 5.6a.  The

shadow mask is set so that position 5 lies over the substrate, which patterns absorbers of

dimensions 250 ×  250 microns, along with a resistance ratio strip.  The load lock is

pumped down, and the Ferrari is transferred to the main chamber in position above the

copper sputter gun.  Sputtering deposits four square copper absorbers on each membrane as
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depicted in Fig. 5.6b.  The Ferrari is then transferred back to the load lock, where the mask

is transferred from the absorber position to a wiring position, while still under vacuum.

Position 7 is often used to so that the transition-edge sensors will be 150 microns long.

Next, the Ferrari is transferred back to the main chamber and positioned in place above the

aluminum sputter gun.  An aluminum wiring layer, 200 nm thick, is sputtered on to the

surface, along with a resistance ratio strip, as illustrated in 5.5b and 5.6c.  After the copper

absorbers and the aluminum wiring layer are deposited, the Ferrari, shadow mask, and

sample are transferred back to the load lock and removed from the thin-film deposition

system.  The sample and shadow mask are then removed from the Ferrari.  The exposure to

atmosphere causes thin oxide layers to form on the exposed surfaces of the aluminum and

copper layers, as illustrated in Fig 5.5c.

The sample is then prepared for lift-off.  Photoresist is spun onto the sample, which coats

the surface of the substrate and the deposited films, as illustrated in 5.5d.  After baking, the

sample is placed back into the Ferrari, along with the shadow mask.  The mask is set to

position 4, which patterns the films used to make the transition-edge sensors.  The shadow

mask is used as a photomask for the lift-off process.  The Ferrari is placed under an

ultraviolet light for about a minute, which exposes the pattern of the transition-edge sensors

into the photoresist.  Then, the exposed pattern of photoresist is chemically removed in the

developing process.  This process leaves a pattern of photoresist on the surface of the

substrate as shown in Fig. 5.5e.

The Ferrari and sample are placed back into the load lock of the thin-film deposition

system, without the shadow mask.  After pumping down the load lock, the sample is

transferred into position above the ion gun.  The sample is ion milled for one minute.  The

ion milling removes oxidation layers formed by exposure to atmosphere, but does not

destroy the photoresist, as is illustrated in Fig, 5.5f.  After the oxidation is removed from the

surfaces where the film is to be deposited, the sample is placed in position above the copper
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sputter gun.  A copper film is sputtered onto the sample.  Then the sample is transferred to

the aluminum sputter gun, where an aluminum film is deposited.  The aluminum-copper

bilayer film that was deposited forms the transition-edge sensor.  The ratio of the

thicknesses of the two films determines the critical temperature of the phase transition, due

to the proximity effect between the aluminum which has a critical temperature of

Tc = 1 2.  K  and copper which a normal metal.  A plot of phase transition temperature of

bilayer films with various thickness of aluminum and copper is shown Fig. 5.7.  The data

for this plot were measure by Daniel Chow, Harrie Netel, and myself.  The plot is

reproduced from the Ph.D. thesis of Harrie Netel [1].  The thickness of the films composing

one of our TES microcalorimeters is described in Section 7.2.

The sample is removed from the thin-film deposition system and placed in acetone for lift-

off to begin.  The photoresist dissolves in the acetone.  The bilayer that was deposited upon

of the photoresist lifts off, leaving the films that form the transition-edge sensors behind,

and the fabrication process is completed.

The fabrication process results in twelve transition-edge sensor microcalorimeters which

typically have a critical temperature of 80 mk to 200 mk, depending on the ratio of copper

to aluminum film thickness in the TES bilayer.  These finished devices are shown in

Fig.5.5h and Fig. 5.6d.  At operating temperature (typically about 100 mK), the aluminum

wiring layer superconducts, but the copper absorber is a normal metal.  The parts of the

bilayer that lie on top of the copper absorbers or the aluminum bonding pads are

proximitized, so that they completely normal or superconducting.  Only the parts of the

bilayer that lie in between the absorbers and the bonding pads function as transition-edge

sensors.
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Figure 5.5.  The fabrication of our TES microcalorimeters as shown in cross section.  First, the absorber and bonding
pads are sputtered on to the substrate in the thin-film deposition system, using a shadow mask for patterning (step a-c).
Next, the sample is remove from the thin-film deposition system, and a pattern for the TES thermometers is placed on
the surface using photolithography (steps d, e).  The sample is then placed back into the thin-film deposition system for
deposition of the TES thermometers (steps f, g).  Finally, the photoresist is lifted off, leaving the thermometers on the
substrate (step h).
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a.) Our devices are patterned on
1 inch by ¼ inch silicon substrates
supporting 1.1 mm by 1.1 mm area
membranes.

b) The copper absorber are deposited first. They
are roughly a micron thick. Four absorbers are
placed symmetrically on each membrane. Copper
RRR strips are deposited at the same time.

c.) Aluminum contact pads are deposited next.
Aluminum RRR strips and markings labeling the
micro calorimeter are also deposited.

d.) Finally, the TES bilayers are deposited. The TES’s
have width varying from 50 to 150 microns. The
lengths of the TES is determined by the aluminum
wiring layer.
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Figure 5.6.  An illustration of the deposition of our superconducting transition-edge sensor microcalorimeters for
detection of x-rays, as viewed from above.  The mask pattern is called “Sunflower” because the calorimeters are
distributed symmetrically around the membranes like pedals on a flower.
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Figure 5.7.  Measured transition temperatures of aluminum/copper bilayer films.  The transition temperature is plotted
as a function of the thickness of the aluminum layer.  The thickness of the copper film is 83.0 nm minus the thickness
of the aluminum film so that the total thickness of the bilayer film is kept constant.
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C h a p t e r  6

EXPERIMENTAL SETUP

6.1  Introduction to our experimental setup

A large part of the expertise of the cryogenic detector group at Lawrence Livermore

National Laboratory pertains to the experimental study of low-temperature detectors.  Such

expertise is necessary because much of the technology required to run our experiments is

not commercially available.  Our group designs and constructs our own adiabatic

demagnetization refrigerators.  Additionally, we install and maintain the wiring, amplifiers,

and thermometry in our refrigerators.  Also, certain knowledge is required to work safely

with technologies involving potential hazards such as cryogenic liquids and high voltage

radiation sources.  In this chapter, I will describe some of the technologies involved with the

experimental study of low-temperature detectors.

6.2  Refrigeration

Our microcalorimeters are designed to be operated at very low temperatures—we typically

operate them at a temperature near 0.1 K.  Cryogens and adiabatic demagnetization

refrigerators (ADR) are used to cool our samples down from room temperature to a fraction

of a degree above absolute zero.  These refrigerators are designed with great care to isolate

inner cold parts of the refrigerator from the room temperature environment of the

laboratory.
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An illustration of our refrigerators, also called cryostats, is shown in Fig. 6.1.  Our cryostats

are vacuum bottles, consisting of four progressively colder stages: the room temperature

stage, the liquid nitrogen stage, the liquid helium stage, and the ADR stage.  The four stages

are nested like Russian dolls so that each cold stage lies completely within the next coldest

stage.  The stages are thermally isolated from each other so that the thermal load on the

colder stages is minimized.  Low thermal conductivity structural supports hold each of the

stages in place.  When a cryostat in operation, the air is pumped out from the inside of a

cryostat so that the inner pressure is less than 10 6−  Torr.  Thus, thermal isolation is

provided by a single vacuum space that separates the stages as shown in the figure.

The room temperature stage, which is the warmest, outermost stage, is a cylindrical

aluminum vacuum tight bottle that forms the outside surface of the cryostat.  The nitrogen

stage is a cylindrical aluminum shell suspended on thermally insulating standoffs within the

vacuum space of the cryostat.  Part of the nitrogen stage forms a reservoir that is filled with

the liquid nitrogen.  The nitrogen stage is cooled by liquid nitrogen in the nitrogen reservoir

to 77 K.  The liquid nitrogen provides continuous cooling power by boiling off into the

atmosphere.  The nitrogen reservoir has to be refilled about every 12 hours before the

nitrogen runs out.

The helium stage and helium reservoir lie within the nitrogen stage.  The helium stage is

similarly cooled by liquid helium in the helium reservoir.  However, at atmospheric

pressure, liquid helium boils at 4.2 K—a temperature that is too warm for our ADR stage to

work properly.  We pump on the helium reservoir to lower the pressure within, which

lowers the helium boiling temperature.  By pumping on the helium reservoir we lower the

temperature of the helium stage to about 2 K, which is a temperature cold enough to operate

the ADR.  The helium stage provides the 2 K enclosure in which our experiments are

conducted.
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The ADR stage is shown in Fig. 6.2.  It consists of the crab, which is a receptacle for our

microcalorimeters and other devices, a cold plate, which provides a surface to which

thermometers and other experimental devices may be anchored, and a magnetic salt pill.

X ray

Pumped liquid helium (2 K)

Helium vapor

Liquid Nitrogen (77 K)

Nitrogen vapor

Salt
pill

Room temperature (300 K)

77 K

2 K

thermometer

~100 mk

Windows

Microcalorimeter

Heat switch

Heat sink
(77 K)

Heat sink
(2 K)

Low
pass
filters

Wires

Superconducting
wires

Solenoid
electromagnet

Figure 6.1.  An illustration of one of our cryostats in position to conduct an experiment.  In this configuration the
detector is on the ADR stage in the bottom quarter of the cryostat.  The ADR stage is typically regulated at a
temperature between 50 and 200 mK.  The ADR stage is suspended in the vacuum space enclosed by the 2K pumped
helium stage, which is enclosed in the 77K liquid nitrogen stage.  The outer most stage is a vacuum tight bottle, which
is at room temperature.  Wires running in from the outside of the cryostat to the ADR stage are heat sunk on the various
stages to minimize thermal loading of the ADR.
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Figure 6.2.  The Adiabatic Demagnetization Refrigerator (ADR) Stage.  The whole ADR stage is suspended on kevlar
strings in the vacuum space of the 2K stage so that it is thermally isolated.  It comprises the crab, the cold finger, the
cold stage, and the salt pill.  The salt pill, which is not shown in the 3-D illustration, provides refrigeration.
Microcalorimeters are mounted on the crab.  Other devices, such as thermometers, can be mounted on the cold stage.
The ADR stage is thermally connected to the heat switch through the cold finger, when the heat switch is closed.
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The ADR stage is suspended on taught kevlar strings within the 2 K enclosure.  The kevlar

strings provide rigid structural support, but they conduct very little heat from the helium

stage.  The ADR stage and the 2 K stage can be thermally coupled and decoupled by the

heat switch.  When the heat switch is closed, the ADR stage is well coupled the helium

stage.  When the heat switch is open, the ADR stage is thermally isolated from the 2 K

environment of the helium stage.

The ADR stage is cooled from 2 K down to temperatures as low 50 mK by the adiabatic

demagnetization refrigerator (ADR).  The ADR consists of a salt pill and a large magnet

that work in conjunction with the heat switch and the helium reservoir to provide cooling to

the ADR stage.

A crystal of hydrated paramagnetic salt, ferric ammonium alum (FAA), comprises most of

the salt pill.  When no external magnetic field B  is applied to the salt, the magnetic spins of

the iron atoms in the salt are randomized.  When a magnetic field is applied to the salt pill, a

fraction of the spins lines up with the magnetic field.  The stronger the magnetic field, the

greater the fraction of the spins that line up.

Before describing the refrigeration process, we shall describe the case in which the salt pill

is thermally isolated from its environment.  In this case, the application of a magnetic field

to the salt is a reversible process in the salt:  There is no change in entropy of the salt during

this process (called magnetization).  Application of the magnetic field orders the spins in the

salt, producing a net decrease in the entropy of the spin orientations.  The loss of entropy in

the spin orientations is compensated by an increase in the entropy of the thermal modes of

the salt so that there is no net entropy change.  Therefore, the temperature of the salt

increases when the magnetic field is applied.  Conversely, when the magnet field is

removed, the spins disorder and the temperature drops in the salt.
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We exploit the properties of the magnetic salt to refrigerate our samples.  The refrigeration

process is as follows:  Initially, the cold stage is thermally connected to the pumped helium

reservoir by the closed heat switch.  This cools the ADR stage to 2 K.  Then, a 3 T magnetic

field is applied to the salt by a large solenoid electromagnet.  The magnetic field causes the

spins to order and the temperature of the salt the increase to about 10 K.  The salt is then

warmer than the liquid helium, so heat flows from the salt pill to the helium through the

closed heat switch.  The heat flow lowers the entropy in the salt.  The pumped helium

dissipates the heat by boiling off quicker and cools the salt and the rest of the ADR stage

back down to 2K in about 15 minutes.  Once the salt is cool again, the heat switch is opened

to decouple the cold bath from the helium reservoir.  Then, the magnetic field is ramped

down (called demagnetization).  This causes the spins to disorder, and entropy is conserved

by a corresponding drop in temperature.  This process reduces the temperature of the salt

pill and cold stage from 2 K down to about 50 mK.  Thermal loading, which is dominated

by heat conduction along wires that connect devices on the ADR stage to laboratory

electronics, slowly warms the cold stage back up to 2 K.  When the cryostat is working

well, the cold stage remains below 100 mK for up to 12 hours.

We are careful to minimize both heat conduction and Joule heating in the wiring.  Wires

that originate at the room temperature stage are heat sunk at the nitrogen stage and the

helium stage.  Wires running from the helium stage to the cold stage must have high

electrical conductivity but low thermal conductivity.  Long, thin superconducting niobium-

titanium wires (which are copper-nickle clad) or phosphor-bronze wires are typically used

for this purpose because they have relatively low thermal conductivity but high electrical

conductivity.
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6.3  Mounting the detectors in the cryostat

Our microcalorimeters are mounted onto device holders that are screwed to the crab as

shown in Fig. 6.3.  In most measurements, a collimator is placed over the

microcalorimeters.  The collimator has a tiny holes in it above the absorbers of devices to be

tested.  A hole in the collimator allows x rays to pass through to be absorbed in an absorber.

The TES’s and the substrates are shielded from x-rays by the collimator.

The device holders have sixteen planar copper wires that can be wire bonded to the wire

bonding pads of the microcalorimeters on the substrate.  The copper wires are soldered to a

connector that plugs into a receptacle on the crab.  Some of the superconducting wires

leading from the receptacle are connected to our dc SQUID amplifiers.  Other wires are led

through heat sinks to connectors on the outside of the cryostat, where they are connected to

instruments as needed.  These wires are used to bias and read out the detectors.

6.4  Temperature regulation

Thermometers are deployed in a cryostat to measure the temperature of various stages.  The

temperature of the ADR stage is measured using a germanium resistive thermometer (GRT)

or a thin film ruthenium oxide thermometer.  These thermometers are designed so that their

electrical resistance increases rapidly with decreasing temperature.  The resistance of these

thermometers is read out by our AVS 47 resistance bridge sold by Oxford Instruments.  The

resistance bridge reads out the resistance through a four wire measurement:  It applies a

small current to the resistive thermometer through two wires, and it measures the potential

difference via the other two.  The sensitivity of the temperature measurement is limited by

electronic noise in the thermometer.  We typically obtain measurements as good several

microkelvin.
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Figure. 6.3.  Placement of microcalorimeters on the ADR stage.  The substrate is adhered to a sample mount as shown.
The aluminum leads of the detector to be measured are wire bonded to copper wires on the sample mount as indicated
by black lines. (In this illustration, the TES bias lead, the ground wire, and the heater lead of one microcalorimeters are
connected.)  A collimator is placed over detectors so that incoming x rays are blocked except over the absorber of the
microcalorimeter to be measured.  The sample mount is plugged into the crab of the ADR stage.  Wires leading from
the receptacle on the crab connect the microcalorimeter to the SQUID amplifier and other electronics.
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We assume that the fluctuations in the ADR temperature occur at very low frequencies

because the C/G time of the ADR stage is much larger than the thermal time constant of the

microcalorimeter.  The first order effects of this noise on the microcalorimeter performance

are negligible because most the signal from the microcalorimeter occurs at much higher

frequencies.  However, the second order effects of this noise are significant:  Low-frequency

variations in bath temperature can cause variations in the gain of the calorimeter.

If the gain of the microcalorimeter fluctuates significantly during a measurement, then the

amplitudes of the pulses will vary, resulting in broader peaks in the spectrum and poorer

energy resolution.  The gain of the microcalorimeter is determined by the temperature T  of

the TES and the electric current I  flowing through the TES.  The temperature and current

are in turn affected by the bath temperature Tbath , which is the temperature of the substrate.

In normal operation, the temperature of the substrate equals the temperature of the ADR

stage.  Therefore, it is important to keep the temperature of the ADR stage as stable as

possible to minimize fluctuations in the gain of the microcalorimeter.  Our experience is

that a stability of 5 µK to 10 µK is sufficient for our experiments.

Suppose that a microcalorimeter is used to measure x rays of energy E.  In response to the

absorption of x rays, the microcalorimeter produces electronic pulses with amplitude a.  The

amplitudes of the pulses vary by the amount ∆a because the bath temperature Tbath varies by

the amount ∆Tbath during the measurement.  If the microcalorimeter is calibrated so that

pulse amplitude is proportional to x-ray energy, then variations in pulse amplitude cause the

energy measurements to vary by energy ∆E.

∆ ∆
E

a

a
E= (6.1)
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The amplitude a depends on the power dissipated in the calorimeter.  The power depends on

the bath temperature.  Therefore, we express variations of the pulse amplitude in terms of

variations of the bath temperature:

∆ ∆ ∆a
da

dP
P

da

dP

dP

dT
T

c
c

c
= = c

bath
bath , (6.2)

where the power Pc is described by equation (4.3), and ∆Pc is the amount the power varies

due fluctuations in the bath temperature.  From equation (4.3), we obtain
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=
−

−1
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where we have assumed that the microcalorimeter temperature T is held constant by

electrothermal feedback.  To estimate the effect of the temperature fluctuations, we assume

that pulse amplitude is approximately proportional to power Pc:

da

dP

a

Pc c
≅ . (6.4)

Using equations (6.1), (6.2), (6.3), and (6.4), we find that

∆ ∆E
NT

T T
T E

N

N N
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−

−
bath

bath
bath

1
. (6.5)

By using equation (6.5), we find that fluctuations in the ADR stage temperature of 5 µK

will cause the measurements of 6 keV x rays to vary by approximately 1.5 eV, if N=1,

Tbath=100 mK, and T0=120 mK.  (These values correspond to the calorimeter described in

Chapter 7.)
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After demagnetization, the temperature of the ADR stage slowly increases as heat leaks into

the ADR stage from various sources, if the temperature is unregulated.  (The primary source

is usually heat leaking in along the wires that are used to read out devices on the ADR

stage.)  However, we can regulate the temperature at a constant value (such as 100 mK) by

applying a magnetic field to the salt pill.  In this approach, we read out the temperature of

the ADR stage, as measured by the resistance bridge and a germanium thermometer

mounted on the cold stage.  If the temperature is below the set point, the magnetic field is

increased, thereby warming the salt and the rest of the ADR stage.  If the temperature is to

high, the magnetic field is reduced.  Temperature regulation is accomplished by a Linear

Research LR-130 temperature controller.  The LR-130 takes in the offset resistance from

the set point as an analog voltage input from the resistance bridge.  The input is filtered and

converted to a voltage output by the LR-130.  The voltage output is then converted to a

current and sent through the ADR magnet, which applies the magnetic field to the salt pill.

Using the LR-130 controller, we can achieve a temperature stability that is limited by the

sensitivity to which the temperature can be measured (several microkelvin).  The controller

can regulate the temperature of the ADR stage on a time scale greater than or equal to the

thermal time constant, C G/ , of the whole ADR stage, which about 1 second at 100 mK.

An alternative means of temperature regulation has also been employed.  This method

involves mounting the detectors on a remote cold stage (RCS) which is heat sunk to the

ADR stage, but relatively thermally decoupled.  A heater (which is a heat sunk 500 kΩ

resistor) is also mounted on the remote cold stage, along with a germanium thermometer.

The temperature of the remote cold stage is read out and then fed back to the heater by the

resistance bridge and the LR-130.  The feed back can regulate the temperature of the RCS to

a temperature greater than the temperature of the ADR stage.  If the temperature of the RCS

is below the set point, the current through the heater is increased and the temperature

increases due to Joule heating.  If the temperature is to high, the current through the heater is
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reduced, and the RCS is cooled by heat leaking out to the colder ADR stage.  Using the

feedback, the temperature of the RCS is controlled to several microkelvin.  The thermal

response time is much faster than for the ADR stage because the heat capacity of the RCS is

much less than the heat capacity of the ADR stage.  The C G/  time of the RCS is typically

0.1 microsecond.

6.5  Radiation sources

Obviously, sources of x-ray radiation are required to test our x-ray microcalorimeters.  We

sometimes mount an Fe55 radioactive source in our cryostat in front of our detectors to use

as a source of x rays.  The Fe55  radioactively decays into Mn55 by electron capture.  The

newly created Mn55 atoms have vacancies in their K electron orbitals.  About 85% of the

time, Mn Kα (5895 eV) photons are emitted when electrons drop into these vacancies, and

Mn Kβ (6490 eV) photons are emitted 15% of the time.  The strength and location of the

source are chosen so that there are a few absorption events per second in the absorber.

We often use a Henke tube x-ray source.  In this electronic source, electrons are accelerated

in vacuum across a electric potential of several kilovolts into a target.  The target emits

emitting x rays through bremsstrahlung and florescence.  Many of these x rays are absorbed

by a second target, which also fluoresces.  Some of the x-rays emitted from the second

target pass through the windows into the cryostat, where they irradiate the detector.  The

Henke tube source is designed so that the experimenter can easily switch between secondary

targets.  Each secondary target emits a characteristic spectrum of x-ray lines, depending on

its elemental composition.  For instance, a manganese target emits Mn Kα and Mn Kβ

lines.  The experimenter can turn off and on the various emission lines by switching

between secondary targets made of different elements.
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6.6  Detector electronics

6.6.1  The SQUID system

We require large-bandwidth low-noise amplifiers to read out our TES microcalorimeters.

Low noise is required in order to obtain the best possible energy resolution:  Ideally, the

energy resolution of a microcalorimeter is limited by intrinsic noise in the microcalorimeter

such as phonon and voltage noise, not by amplifier noise.  Large bandwidth is required for

two reasons.  First, the bandwidth of the electronic amplifier should exceed the bandwidth

of the microcalorimeter so all the frequency components of the signal are measured.

Second, it is essential to have fast amplifiers in order to accurately measure the shapes of

the pulses.  The rise of the pulse, which is typically microseconds, is used by the electronics

to trigger the measurement of a pulse.  Triggering is more accurate if the amplifiers have

very wide bandwidth.  Also, the rise and decay of the pulse contain information about how

long it takes the energy of the pulse to be thermalized in the TES and leak out to the cold

bath.  Furthermore, irregularly shaped pulses can offer clues as problems with the design of

a microcalorimeter.

We primarily use Hypress dc SQUID arrays to read out the current I  that is conducted

though our TES’s.  These arrays are sensitive, low noise current amplifiers with large

bandwidth.  The noise is typically 2 pA / Hz , except at low frequencies where there is

significant 1 / f noise.  The bandwidth of the SQUID amplifiers, 2.5 MHz , is larger than

the bandwidth of our microcalorimeters.  These amplifiers are sufficiently fast to accurately

measure the shapes of our pulses.

A SQUID current amplifier from Hypress consists of a dc SQUID array, a device input

inductance coil, and a feedback inductance coil all mounted on a single chip.  An array of

SQUIDs is used rather than just one SQUID because the array, which has much larger

impedance, is better impedance matched to standard FET-based amplifiers used for readout.
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(This allows the SQUID array signal to be measured directly by a measurement of voltage

across the array, without bandwidth limiting a.c. modulation typically used in single

element DC SQUID electronics.)  The input and feedback coils overlap the SQUID array,

so that electric current flowing through the coils creates a magnetic flux that passes through

the SQUID loops.  The voltage across the SQUID array is a periodic function of the

magnetic flux through the SQUID array.  The magnetic flux from input of feedback coil is

proportional to the current through the coil.  Therefore the SQUID array provides a

measurement of the electric current through the coils.

The response of the SQUID array to current through the input inductance coil is nonlinear.

The output of the SQUID system can be made linear by operating it in flux locked loop

mode as illustrated in Fig. 6.4.  In this mode, an amplifier couples the output of the SQUID

back into current through the feedback coil, providing negative feedback.  Any changes in

current I  through the input coil result in opposing changes in feedback current IFB  through

the feedback coil.  The SQUID is flux locked because the magnet flux through the SQUID

is held constant by negative feedback.  In this scheme, the feedback voltage VFB  is

proportional to the device current I .  The feedback voltage VFB  is filtered and measured by

our laboratory electronics.

A schematic of a single Hypress SQUID readout channel is shown in Fig. 6.4.  In this

system, the detector is biased by a regulated voltage Vb  outside the cryostat.  This voltage

causes a bias current Ib  to flow through the bias circuit.  If the TES thermometer R I T( , )

has a higher electrical resistance than the shunt resistor Rs , then most of the current Ib

flows through the shunt.  In this case, the bias circuit biases the thermometer with a voltage

V V R R Rf0 ≅ +b s b/ ( ) .  The combination of bias resistor Rb and shunt resistor Rs are

chosen so that a bias voltage Vb  of a few volts produces a voltage across the thermometer
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V0  of a few microvolts.  The combination of the resistor Rf  and the capacitor Cf , which

are located on the helium stage, function as an RC filter that filters out high frequency noise

coming in on the bias line.

The input inductance coil L  of the SQUID lies in series with the TES thermometer.  When

a voltage Vb  is applied to the bias circuit, a current I  is conducted through the thermometer

R I T( , )  and the SQUID input coil.  The SQUID measures the current flowing through the

SQUID input coil.  Note that there is also some additional inductance associated with the

wiring of the loop containing the shunt resistor Rs , the thermometer R I T( , ) , and the

inductance coil.  This additional inductance can be included into L  when modeling the

circuit.  In modeling the response of the microcalorimeter, the circuit is simplified to a
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Figure 6.4.  A schematic of a SQUID readout circuit.  Electrical current I that flows through the TES, R(I,T), also flows
through the SQUID input coil L.  The coil L generates a magnetic flux through the dc SQUID array that is proportional
to the current I.  When the SQUID is properly biased with current ISQ at low temperature (below the critical
temperature of the niobium SQUID arrays), the voltage across the SQUID array is a periodic function of the magnetic
flux penetrating the SQUID array.  The feedback electronics apply a current IFB through the feedback coil so that
magnetic flux from LFB exactly cancels the flux from the input coil L.  Thus, the flux in the SQUID array is “locked” to
a constant value, and the feedback voltage VFB is proportional to the current I.  An absorption event in the calorimeter
causes a pulse in the current I and a pulse in the feedback voltage VFB.  Feedback voltage pulses are filtered and
recorded by our laboratory electronics.
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Thevenin equivalent, as shown in Fig. 4.2.  In this model, the inductance and capacitance

associated with wires and filters that bring the current Ib  into the bias loop are neglected.

This is a reasonable approximation because Ib  is assumed to be slowly varying or

approximately constant during a measurement.

The speed of the electronic circuit is approximately described by the time constant

L R R/ ( )s + 0 , where R0  is the equilibrium resistance of the thermometer.  The actual

electronic time is in not exactly given by this expression because the resistance R I T( , )  of

the thermometer changes with current I .  The effect of current dependent resistance on the

electronic time constant were described Section 4.4.

The actual layout of a SQUID system installed into one of our cryostats is shown in

FIG. 6.5.  The system contains four Hypress SQUID channels.  Each SQUID array and

associated inductance coil is located on chip a that is sealed in a niobium tube.  The tubes

superconduct at temperatures below 9.5 K.  When superconducting, they expel magnetic

flux, thereby insulating the SQUIDs from magnetic noise.  Wires connect the inductance

coil, the shunt resistor, and a TES thermometer to form the bias loop, as in Fig. 6.4  These

wires are shielded in superconducting capillaries made from lead-tin soldiering wire.

6.6.2  Grounding and shielding

The energy resolution that is obtained from a calorimeter can be adversely affected by noise

from electronic pickup.  This radio frequency noise originates from a.c. power supplies and

instruments in the laboratory, computers, monitors, broadcast radio stations, and other

sources.  Pickup causes noise by inducing spurious voltages and currents in the detectors

and other electronics, especially in long wires which act like antennas.
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Electrically conductive shielding is a good defense against radio pickup.  The conductive

metallic cryostat reflects radio-frequency electromagnetic waves, thereby shielding the

electronics within.  However, radio frequency noise can be brought into the cryostat along

wires and in gaps where the cryostat is sealed by nonconductive elements such as rubber o-

rings or windows.  Cables running between laboratory instruments and the cryostat are also

shielded to minimize pickup.  Many of the wires leading into the cryostat are low pass

filtered to exclude pickup frequencies higher than a kilohertz.  However, lines that carry out

Figure 6.5.  The layout of a four channel SQUID system using Hypress SQUID arrays.  The SQUID arrays are located
on silicon chips in the four dark colored niobium tubes that shied the SQUIDs from stray magnetic fields.  The tubes
are mounted on a copper plate next to the crab.  The whole system is screwed to the 2K helium stage of our cryostat.
Each SQUID is connected to a shunt resistor and to a receptacle on the crab (which plugs into the sample mounts that
hold our microcalorimeters) by wires that superconduct at low temperature.  The SQUID system is plugged into signal
and bias lines leading out of the cryostat via copper wires shown on the right.
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signals from the microcalorimeters can not be heavily filtered, or else much of the signal

would be filtered out.  For further protection against radio waves, the cryostat and much of

the laboratory electronics are located in a Faraday cage, which is a well grounded metal

room that can be tightly sealed shut to radio emissions.  Digital electronics and monitors are

kept outside the Faraday cage for the most part, because they tend to generate a lot radio-

frequency noise.  Electric cables leading into the Faraday cage from the outside laboratory

are filtered at feedthroughs in the cage to minimize noise.

Detectors and various amplifiers are powered by batteries, rather than by commercial

voltage sources that use a.c. power supply from a wall socket.  We do this because such

sources often have significant ripple, and because power cords plugged into the a.c. power

grid radiate radio frequency noise into the Faraday cage.

Careful consideration of the grounding of laboratory instruments is required to minimize

radio-frequency pickup.  Ideally, all laboratory instruments should be grounded at one point

on the Faraday cage to minimize pickup.  Instruments should not be multiply grounded

because multiple paths to ground create ground loops—ground loops provide low resistance

paths that allow large currents to flow in response electromagnetic fields, thereby causing

more pickup.  When measuring energy spectra, I configured the grounding of our

instrumentation as is illustrated in Fig. 6.6.  In that configuration, all the electronics inside

and outside the Faraday cage were grounded to one point on the cage.  The central

grounding point is a feed through on the cage that connects the BNC signal cable from the

cryostat inside the cage to a BNC cable leading to the digitizer outside the cage.  Many of

the instruments are powered by the a.c. power grid, but their ground lines have been

disconnected from the ground lines in the wall sockets.  None of the instruments are

allowed to touch grounded parts of the Faraday cage.  Grounding is provided by the

shielded cables that interconnect the instruments.  Note that extreme care must be taken

when running an experiment in this configuration.  Ground wires can not be safely
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disconnected when the instruments are plugged into the a.c. power grid unless an alternate

path to ground is provided.  Electronics such as the computer monitor must be properly

grounded to avoid risk of electrical shock.

As previously stated, Fig. 6.6 illustrates the grounding scheme employed when spectra are

measured.  However, we often take other kind of measurements, such as IV curves and

resistance versus temperature curves of TES’s.  In those measurements, several signal

cables run to the digitizer from inside the cage.  The additional lines are required measure

quantities such as temperature or bias voltage.  The additional connections form ground

loops.  However, these kinds of measurements are less sensitive to noise than is the

acquisition of energy spectra from TES microcalorimeters.

Varying magnetic fields can also generate pickup.  The SQUID system and our

superconducting devices are enclosed in magnetic shields that block or expel magnetic

fields.  The ADR magnet is surrounded by a magnetic shield to contain magnetic fields
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Figure 6.6.  A schematic of the grounding scheme used when spectra are recorded from one of our microcalorimeters.
In this scheme, all the instruments are grounded to a feedthrough on the Faraday cage.  The system is set up so to avoid
ground loops because ground loops contribute to electrical pickup.  Note that care must be taken to ensure that all
instruments remain well grounded when connected to the a.c. power grid, or else there will be an electrical shock
hazard.
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from the magnet.

6.7  Filtering and data acquisition

The feedback voltage VFB  is sent to an Ithaco 4302 broad-band amplifier.  The Ithaco

amplifier can be set to low-pass filter and high-pass filter the signal over a range of

frequencies between 1 Hz and 1 MHz.  The Ithaco amplifier can also be set to apply a gain

factor of either 1, 10, or 100.  The output of the filter box is sent to a Sony Tektronix RTD

710 digitizer.  This instrument digitizes the signal, and sends it to the computer by way of

GPIB.  Lab View software on the computer displays the data on the computer monitor and

then stores this the data on hard drive.

The digitizer samples the signal and noise at constant time intervals.  Noise at frequencies

higher than the sample frequency, appears at low frequencies due to digital aliasing.  The

analog signal must be low-pass filtered at half the sample frequency (called the Nyquist

frequency) to exclude this high frequency noise.  The anti-alias filter smoothes out data over

time scales less than the sampling time.  When anti-alliased, each sample is an average

value of the signal plus noise during that sample interval.  Therefore, anti-aliasing improves

the signal to noise of a measurement.  In practice, the signal is often low-pass filtered at a

frequency lower than the Nyquist frequency to cut out those frequencies at which there is

little signal compared to the noise.

6.8  Data analysis software

As previously described, the signal and noise are recorded on a computer hard disk drive by

Lab View programs.  The data stored on the computer can take many forms: measurements

of current versus voltage characteristics of a TES, resistance versus temperature curves of a

TES, measurements of pulses from TES microcalorimeters, noise measurements, etc.  There
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is a Lab View computer program specifically written to record and display each of these

each of these kinds of measurements.  (Most of the Lab View software was written by Carl

Mears and Larry Hiller, with some small changes made by myself and others).  After this

data is stored on the computer’s hard drive, it is later analyzed by the experimenters, using

other software.

The major data analysis tool that we use in our Laboratory is a program called “Filter

Pulses”.  Figure 6.7 illustrates the program’s graphical interface.  The program was written

in Interactive Data Language (IDL).  Most of the code was written by me, but significant

parts were written by Carl Mears.  The main purposes of the filter pulses are to digitally

filter recorded pulses from energy-dispersive detectors and to calculate energy resolution.

This involves digitally filtering out frequencies in which there is low signal to noise and

involves discriminating between various kinds of pulses based on the there pulse shapes.

The digital acquisition of a spectrum of one of our TES microcalorimeters proceeds as

follows:  When an energetic particle is absorbed in the absorber, the microcalorimeter

responds by generating a pulse in current.  The current pulse is measured by the SQUID

system, which sends a proportional voltage feedback pulse to the digitizer via the filter box.

The rise of each pulse triggers the digitizer to record the pulse digitally and send it to the

computer.  Each pulse is digitally sampled 1024 times.  Typically the digitizer is set to store

256 samples before the trigger event and 768 samples from the time of the trigger and after.

The sampling time interval is set so that data from the rise and the decay of the pulse are

recorded, as well as some the pretrigger data.  Typically, thousands of such pulses are

recorded in a file for each spectrum that is measured.  Information about the sample rate and

the voltage scale of the digitizer are recorded along with the pulses.
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After the pulses are recorded, the program “Filter Pulses” is used to analyze the data.  In the

initial digital filtering step, “Filter Pulses” prompts the user to select a method of

preliminarily filtering the data.  Typically the user instructs the program to measure the

height of the pulses after they are smoothed by convolution them with a Gaussian curve.

The convolution is a digital low-pass filter that is used to smooth out digitization effects and

high frequency noise.  The rise times and decay times of the pulses, and other measures of

pulse shape are also calculated in this step.  The calculated pulse heights, decay times, rise

Figure 6.7.  The “Filter Pulses” program.  This program, which was mostly developed by myself, is used to filter
digitized pulses from energy-dispersive detectors.  The program can plot measurements of rise time decay time, pulse
height or other parameters.  The program is used to discriminate between different kinds of pulses based these
parameters.  The pulses can be filtered using a Gaussian filter, the computed optimal filter (based on the measured
noise), or other filters.  Measurements of the pulses can be plotted in a number of ways including scatter plots and
histograms.  The measured energy spectrum is obtained from a histogram of pulse heights.  Peaks in such a histogram
can be calibrated and fitted to obtain a measurement of energy resolution.
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times, and other parameters are stored in arrays.  The original data is left unaltered on the

disk drive.

At this stage, pulse height can be plotted against rise or decay time or other measurements

that discriminated shape.  The resulting scatter plots are used to discriminate different kinds

of pulses from each another.  For example, Fig. 6.7 and Fig. 7.9 shows a scatter plot of

pulse height versus decay time.  In the figure there are several clusters of pulses.  The

various kinds of pulses come from different kinds of events in the microcalorimeter.  The

decay times of pulses vary with the location in which the absorption event occurs.  For

instance, absorption events in the substrate below a TES microcalorimeter may create

pulses with a shorter decay time than absorption events in the absorber.  This information

can be used to exclude or separate pulses from events outside the absorber.

The program allows the user to select those pulses in the scatter plot that correspond to

absorption events in the absorber.  I call selection of pulses on the scatter plot

“gerrymandering” to remind users not to do this in a way that biases the data.

(Gerrymandering is the name of a scheme in which voting districts are drawn unfairly to

bias elections.).

The heights of selected pulses can be plotted in a histogram, by selecting various spectrum-

plotting options in the program.  The binning of the histogram plot can be chosen by the

user.  (Note that the choice of binning can bias the data if there are too few pulses measured,

or if there are too few histogram bins.)  The peaks in the histogram correspond to absorption

events of different energies.  The histogram can be calibrated into units of energy.  The

peaks in the histogram can be fit to Gaussian or Lorenzian shaped functions, and the

FWHM energy resolution is obtained from the fit.
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After the initial filtering of data, the user can choose to optimally filter the data.  The

optimal filter is described in Appendix B.  The experimenter must record digitized noise

samples as well as digitized pulses for the program to compute the optimal filter.  In the

standard algorithm, noise samples must be recorded at the same sample rate as the pulse,

and the noise sample should not have any pulses in them.  For optimal filtering the user is

prompted to select out any noise samples that contain pulses.  The user is also prompted to

select a set of pulses that represent the typical pulse shape to be measured.  Using this

information, the program computes the optimal filter.  When the optimal filter is convolved

with a pulse, it measures the pulse height, and it weights those frequencies with higher

signal-to-noise ratio more heavily than those frequencies with poor signal-to-noise ratio.

The heights of pulses as calculated by the optimal filter can be histogrammed and plotted as

before.  Usually, we obtain our best energy resolutions from our energy dispersive detectors

by using the optimal filter.

Note that the optimal filter only works well if all the pulses have the same shape.  Also note

that non-random noise, such as 60 Hz pickup from the a.c. power grid, is not best filtered by

the optimal filter algorithm because the optimal filter algorithm assumes that the noise has a

random phase.  Periodic noise can be filtered out much better by just subtracting it out of

the data (which is called coherent subtraction).
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C h a p t e r  7

EXPERIMENTAL RESULTS

7.1  Introduction to results

Besides modeling, design, and fabrication of microcalorimeters, my research with the LLNL

cryogenic detector group involved considerable experimental work with these detectors.  I

developed an experimental method for characterizing TES microcalorimeters based on the

theory of Chapter 4.  A part of my experimental work, I assisted fellow graduate students

Harrie Netel and Daniel Chow with the characterization, measurement, and analysis of their

TES gamma-ray detectors.  However, most of my research related to the development of

various TES-based microcalorimeters for the measurement of x rays.  In this chapter, the

discussion is focused the experimental results obtained from x-ray calorimeters fabricated

using the “Sunflower” shadow mask as described in Chapter 5.

7.2  The “Sunflower 12-1.2.3” microcalorimeter experiment

Up to the date of the this writing, the highest quality microcalorimeter fabricated in our

laboratory is the device called Sunflower 12-1.2.3.  The finished device is illustrated in

Fig. 7.1.  The device was fabricated using the “Sunflower” shadow mask, sputtering, and

liftoff as described in Section 6.4.2.  The TES consists of a bilayer of 55 nm of copper and

35 nm of aluminum.  Our measurements indicate that this ratio of film thicknesses

consistently produces TES thermometers with transition temperatures between 110 mK and

130 mK.  The absorber of the microcalorimeter consists of a 250 µm × 250 µm × 3 µm
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copper film.  This film absorbs approximately 30% of 6keV x rays passing through it The

device was mounted in one of our cryostats as described in Section 6.3.  The ADR was used

to cool to roughly 100 mK as described in Section 6.2.

7.2.1  Details of the measurement

The microcalorimeter was measured using a Hypress SQUID as described in Section 6.7.1

It was biased using a bias circuit as shown in Fig. 4.2, with the shunt resistance Rs=20 mΩ.

The resistance of the TES and the shunt resistance lie in series with resistance due parasitic
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Figure 7.1  The layout of the microcalorimeter, Sunflower 12.1.2.3.  The aluminum contact pads, labeled “V+”,
“Heater”, and “Ground”, are also shown.  The device is shown as seen from above and from the side.  The
microcalorimeter lies moistly on the 0.5 µm thick membrane, which decouples the microcalorimeter temperature from
the substrate temperature.  The copper absorber, which dominates the volume and heat capacity of the
microcalorimeter, has dimensions 250 µm by 250 µm by 3 µm.  The TES formed by a bilayer of 55 nm of copper and
35 nm aluminum in between the absorber and the “V+” wire bonding pad.  In operation, an approximate voltage bias is
applied across the “V+” and “Ground” leads as illustrated.  The electric current conducted through the TES is
measured by a SQUID amplifier as described in Chapter 7.  An electric current can be sent through the heater lead to
ground that warms the microcalorimeter through Joule heating in the absorber.  The device is designed to measure
changes in temperature due to the absorber of individual x rays in the absorber.  Temperature changes from the heater
current and x rays are measured by the TES thermometer.
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resistances associated with wire bonds and soldier joints that connect the TES thermometer

to the SQUID amplifier.  These parasitic resistances Rp totaled 14 mΩ in this experiment.

The shunt resistor plus the parasitic resistance combine to form a Thevenin equivalent

resistance of Rth=34 mΩ.  When the TES had a resistance much greater than Rth, it was

approximately voltage biased.

At an operating temperature of 120 mK, the microcalorimeter has a heat capacity of C0=2.2

pJ/K, which implies that the absorption of a 6 keV x ray will raise the temperature of the

microcalorimeter by 0.44 mK.

7.2.2  Measurement of resistance versus microcalorimeter temperature

The first measurement made of the device was the measurement of resistance versus device

temperature.  The resulting data are shown if Fig. 7.2.  A small bias, Vth=20 nV, was

applied.  At this low bias, the device temperature was approximately equal to the

temperature of the ADR stage.  The resistance of the TES lies in series with resistance due

parasitic resistances associated with wire bonds and soldier joints that connect the TES

thermometer to the SQUID amplifier.  These resistances total 14 mΩ.  As shown in Fig. 7.2,

the measured resistance increases from the 14 mΩ value due to parasitic resistance, when

the TES is superconducting, to about 225 mΩ, when most of the TES in the normal metal

state.  The steep part of the phase transition was about 0.25 mK wide.  During the resistance

versus temperature measurement, the current through the device was 1.0 µA when the TES

was superconducting.  The current decreased with increasing resistance to 82 nA when the

resistance was 225 mΩ.  The parameter α = ( / ) /T R dR dT0 0  is 540 when the resistance is

100 mΩ.  The critical temperature of this TES is Tc=121 mK.  In summary, the

measurement of resistance versus temperature indicated that the TES had a phase transition

at the intended temperature, and that the phase transition was narrow enough to allow the
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TES to function as a sensitive thermometer.  The measurement of resistance versus

temperature is described in more detail in Appendix A.

7.2.3  Measurement of current versus bias voltage characteristics

Current through the TES is measured as a function of Thevenin equivalent bias voltage Vth.

These current versus voltage characteristics of the microcalorimeter are each measured with

the bath temperature (the temperature of the ADR stage) regulated to a constant
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Figure 7.2.  The measured resistance versus temperature of the TES thermometer of the microcalorimeter “Sunflower
12-1.2.3.”  The measurement was made using the bias circuit of Fig. 4.2.  with Vth=20 nV and Rth=20 mΩ.  The current
through the TES was less than 1 µA when the TES was on the phase transition.
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temperature.  The characteristics were measured for a sequence of different bath

temperatures.  The measurement of such a sequence of characteristics provides information

about resistance, gain, thermal coupling, power dissipated, and electrothermal feedback in

TES thermometers for a range of bath temperatures and bias voltages.  (The measurement

of current versus temperature characteristics is described in greater detail in Appendix A.)

A plot of current versus voltage characteristics of Sunflower 12-1.2.3 is shown in Fig. 7.3.

For the characteristics shown in Fig. 7.3, the ADR temperature is less than the critical

temperature.  In these measurements, the temperature of the microcalorimeter is sufficiently

low to allow the TES to superconduct at low bias.  Electrothermal feedback in the

microcalorimeter causes the dynamic resistance of the TES to be negative in the transition.

We compute the equilibrium voltage V0 across the TES from the measurements of the

current I and the bias voltage Vth.  In Fig. 7.4, we plot the current I conducted through the

TES as a function voltage V0 across it.  Contours of power dissipated in the

microcalorimeter and contours of resistance are also plotted in Fig. 7.4.  In this plot, the

superconducting branch is vertical.  In the phase transition, electrothermal feedback causes

the microcalorimeter to regulate its temperature T to approximately 120 mK (as will be

explained below).  In the 100 mK I-V characteristic, self regulation causes the power

dissipated in the microcalorimeter to be nearly constant as a function of voltage.  (The

power changes a small amount because the finite width of the phase transition in

temperature allows the power to vary.)
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Figure 7.3  A family of I-V characteristics.  Each I-V characteristic is a plot of the current I through the TES versus the
Thevenin equivalent bias voltage Vth.  Contours of resistance (including thermometer resistance R(I,T) plus parasitic
resistance) are also plotted.  The data were measured with a bias circuit equivalent to the one of Fig. 4.2.  The shunt
resistance was Rs=20 mΩ.  There was an additional 14 mΩ of parasitic resistance in series with the TES due to wire
contacts.  The total Thevenin equivalent resistance due to the shunt resistor and parasitic resistance was Rth=34 mΩ.
The branches of the curves that are strait lines correspond to regions of constant TES resistance.  The supercurrent
branch has a resistance of 34 mΩ due to the Thevenin series resistance Rth.  The normal resistance RN is 400 mΩ.  The
I-V characteristics were measured at a series of bath temperatures, which are indicated in the figure.
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Figure 7.4.  A family of I-V characteristics of the “Sunflower 12-1.2.3” microcalorimeter.  In each characteristic,
current I versus voltage V0 across the TES is plotted.  These characteristic curves are computed from the curves of
Figure 7.3.  Contours of constant resistance R(I,T) of the TES and constant power are also plotted.  The parasitic
resistance has been subtracted from the data.  The superconducting branch of each I-V curve lies on the vertical line of
zero resistance.  The normal branch is of 400 mΩ resistance.  The curved parts correspond to the phase transition.  Few
data points are measured when the resistance is less than 34 mΩ, because the microcalorimeter in unstable when the
TES resistance is less than Rth.

7.2.4  Measurement of thermal coupling

We estimate the strength of thermal coupling between the microcalorimeter and the cold

bath from the data of Fig. 7.4.  The cooling power is described by

P K T TN N= −( )bath . (7.1)
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When the microcalorimeter is at equilibrium, the cooling power equals the power dissipated

in the microcalorimeter, P=IV=I(Vth-IRth).  We compute the power as a function of bath

temperature Tbath from the data of Fig, 7.4.  The resulting data is plotted in Fig. 7.5.  Using

the expression that G P T P T= ≅∂ ∂ ∂ ∂/ / bath  at T T= c , we find that G=1.8 nW/K.

7.2.5  Measurement of critical current versus temperature and the phase transition

Even though the phase transition appears to occupy narrow range about 121 mK in Fig. 7.2,

the TES can be in the phase transition and have a much lower temperature.  This is possible

because the width and temperature of the phase transition depends on the bias current.

The critical current Ic(T) is the largest superconducting current sustainable by the TES at a

given temperature T.  When the TES is superconducting, there is no significant self heating

in the microcalorimeter, therefore the microcalorimeter temperature T then equals the bath
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Figure 7.5  The equilibrium power of the TES versus bath temperature.  The power is computed from the current-
voltage characteristics of Fig. 7.4.
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temperature Tbath.  The critical current Ic(T) of the TES is the largest supercurrent plotted in

a current versus bias voltage curve measured at bath temperature Tbath.  Hence, the value of

the supercurrent can be obtained from data the I-V curves of Fig 7.3.

The plot of critical current versus temperature of the TES of the microcalorimeter is shown

in Fig. 7.6.  For each point on the I-V curves of Fig. 7.3 and Fig. 7.4, the temperature T of

the microcalorimeter is calculated using the equation

T T I V G≅ +bath 0 0 0/ . (7.2)

Using the approximation (7.2), we can estimate the temperature T of the microcalorimeter

for each of the data points in the I-V characteristics of Fig. 7.3.  In Fig. 7.6, we plot the

current I versus the temperature T of the microcalorimeter for each of the I-V characteristics

of Fig. 7.3.

This plot can be used to estimate the temperature of the microcalorimeter.  For example,

this plot indicates that if the current I0 through the TES is 100 µA and the TES is not

superconducting, then the temperature of the TES must be least 100 mK.  (If the

temperature were lower, the TES would superconduct with 100 µA of current.)  Based on

Fig 7.6, we can also conclude that if the current through the device is less than 20 µA and

the TES is not superconducting, then the temperature of the microcalorimeter must be

within several millikelvin of the critical temperature Tc.  From Fig. 7.2, we can conclude

that the temperature of the TES can not be much larger than the critical temperature Tc and

still lie in the phase transition.  (Note that the critical temperature in Fig. 7.2 is several mK

lower than the value Tc ≅ 125 mK, which is inferred from the data of Fig. 7.6.  This

discrepancy is due to variations in thermal loading in the cryostat between the two

measurements.)  Based on these observations, we can conclude that if the TES is in the

phase transition and the bias current is more than 1 µA and less than 20 µA then the
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temperature of the microcalorimeter must be between 120 mK and 125 mK.  We will use

this observation to estimate the temperature of the microcalorimeter at our chosen operating

point.

The boundary between the phase transition and the normal-metal state was not measured.

However, a rough estimate of where this boundary lies is illustrated in Fig. 7.6.  This

boundary must lie to the right of points that lie in the phase transition.  (These are points

where R(I,T) is less than 400 mΩ and greater than 0 mΩ.)  The transition region in the plot

includes these points.  The boundary between the transition and the normal-metal state can

not be at a temperature much higher than the critical temperature Tc because the transition is

narrow at low current as shown in Fig. 7.2.  The boundary line decreases in temperature

with increasing current I  because the magnetic field associated with the current I lowers

the temperature at which the transition occurs.  Precise measurements of this boundary are

not usually conducted by researchers because that measurement requires a second

thermometer to be coupled to the microcalorimeter.  (A second thermometer is useful

because it directly measures temperature T but does not depend on current I.)

7.2.6  Choice of operating temperature and bias voltage

Based on the above measurements, a suitable bath temperature and bias voltage were

chosen for the measurement of pulses from x-ray absorption events.  The first consideration

is that the microcalorimeter should be operated with the bath temperature regulated to a

temperature significantly below the temperature of the TES.  The bath temperature should

be low so that small fluctuations in the bath temperature do not significantly affect the

temperature and gain of the TES thermometer.  (The effects of bath temperature fluctuations

are greatly reduced when the difference between the cold bath temperature Tbath and the

microcalorimeter equilibrium temperature T0 is large compared to the fluctuations in the

bath temperature.)  Also, the calorimeter can be operated at high power when the bath
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temperature is much less than the critical temperature.  High power results in larger signals.

Based on these considerations, the ADR temperature was regulated to a temperature of

100 mK and the TES was operated at a temperature of approximately 120 mK.  The

100 mK bath temperature was also chosen because this temperature was sustainable by the

ADR refrigerator for a long enough time to conduct experiments.  Microkelvin fluctuations

in the bath temperature associated with imperfect temperature regulation had negligible

effect when the TES was operated at a temperature 20 mK above the bath temperature.

Higher energy resolution of a microcalorimeter is obtained for larger values of the

parameter ′ =α ∂ ∂( / ) /T R R T0 0 , as described in Chapter 4.  This formula indicates that the

higher energy resolution is obtained at regions in the phase transition where the equilibrium

resistance of the TES thermometer R0 is small and ∂ ∂R T/ is large.  However, the TES

resistance R0 must be larger than the Thevenin resistance Rth to be approximately voltage

biased.  As stated in Section 4.6, the TES must be approximately voltage biased in order to

avoid instability due to Joule heating.  (In this microcalorimeter, strong Joule heating is

required to elevate the temperature of the TES 20 mK above the bath temperature.)

The operating resistance R0=100 mΩ was chosen as compromise between the demand for a

large value of the parameter ′α , which is largest for small values of R0, and the demand for

approximate voltage bias, which occurs for values of R0 that are significantly larger than Rth.

With the bath temperature regulated to 100 mK, the Thevenin equivalent bias voltage was

set to Vth=2.2 µV.  This choice resulted in the desired resistance of the TES, R0=100 mΩ.

The equilibrium voltage across the thermometer was V0=1.8 µV.  This operating point lies

in the negative dynamic resistance region of the current versus voltage characteristic shown

in Fig 7.4.  The operating point is at the intersection of the 100 mK I-V characteristic with

the 100 mΩ resistance contour of Fig. 7.4.  The equilibrium current through the TES was

I0=18 µA, which implies that the temperature T0 of the microcalorimeter was roughly
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120 mK to 125  mK (based on the argument of Section 7.2.5).  The temperature of the

microcalorimeter was elevated 20 to 25 mK above the bath temperature by a Joule heating

power of 33 pW.
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Figure 7.6.  A plot of the phase transition of the “Sunflower” 12-1.2.3 microcalorimeter.  The critical current versus
temperature is plotted along with measurements from the I-V curves of Fig. 7.3.  The microcalorimeter temperature is
estimated using equation (7.2) for each of the data points of the I-V characteristics.  Those points with near zero
resistance lie in the superconducting region.  The data points with a resistance of less than 400 mΩ but greater than
0 mW lie in the phase transition region of the plot.  Data with resistance equal to 400 mΩ lie in the normal resistance
region.  The thermal coupling is not sufficiently determined to give the precise temperature of the microcalorimeter for
data in which there is significant Joule heating.  Because the temperatures of data points in the transition and in the
normal stat are not precisely known, the boundary between the normal metal state and the phase transition is not
precisely measured.  The boundary between phase transition and the normal metal states is labeled with “?”symbols
because it could not be precisely measured.
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An absorption event could cause the resistance of the TES to increase to as high as

R=400 mΩ.  This occurs when the energy of an absorption event is sufficiently large to

warm the microcalorimeter to the point that the TES is completely in the normal metal

phase.  Such an event would reduce the current I to 5.0 µA, resulting in a current pulse with

a 13 µA amplitude.  This is the amplitude of the largest pulse that can be produced by the

microcalorimeter at the chosen operating point.  In practice, the we wish to measure x rays

that produce smaller changes in temperature of the microcalorimeter because response of

the microcalorimeter is only linear for small pulses.

The highest energy x ray that can be measured by the microcalorimeter is determined by

heat capacity of the microcalorimeter and the width in temperature of the phase transition at

the equilibrium current I0=18 µA.  As previously stated, a 6 keV energy x ray produces a

temperature change of 0.44 mK in this microcalorimeter.  Therefore, the phase transition

has to be much wider than 0.44 mK wide for the microcalorimeter to respond linearly to the

absorption of x rays of energies up to 6 keV.  At low bias, the transition was only 0.25 mK

wide, as shown in Fig. 7.2.  At larger currents the transition is much broader in temperature,

as illustrated in Fig. 7.6.  At the larger operating current I0=18 µA, the transition will be

shown to be much wider.

7.2.7  Measurement of x rays

Electronic noise from pickup is reduced as much as possible before the measurement of

x rays begins.  All unnecessary equipment is disconnected from the cryostat, turned off, and

unplugged from the power grid.  The Faraday cage is often sealed shut to block radio

frequency interference.  The electronics are grounded as described in Section 6.7.2.

The detector is then regulated at the desired operating point:  The bath temperature Tbath is

regulated to 100 mk, and the bias voltage Vth is set to 2.2 µV.  The microcalorimeter is

exposed to the x rays from a Henke tube x-ray source as described in Section 6.6.  X rays
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from the x ray source then impinge on the microcalorimeter as illustrated in Fig. 7.7  The

microcalorimeter responds to each x-ray absorption event by generating a pulse in the

current I.  The pulses are measured, filtered, and digitized as described in Section 6.8 and

Section 6.9.

The measured pulses were filtered by the Ithaco amplifier.  The box was set to low-pass

filter at a frequency of 100 kHz.  The low-pass filter is used to anti-alias the signal and to

suppress noise at frequencies at which the signal-to-noise ratio is small.

A measured pulse from the microcalorimeter shown in Fig 7.8.  The plotted pulse is the

AlSiSi
Si N

Transition-Edge Sensor
 Thermometer

x rays

Collimator

Fluorescence Source
(Al, Mn, Ni, K Cl, etc.)

30% efficient 
absorber at 6 keV

Figure 7.7.  An illustration of the fluorescence measurement experiment using the Sunflower 12-1.2.3
microcalorimeter.  The microcalorimeter lies under a collimator which blocks most of the x rays that would be
absorbed by the substrate.  The microcalorimeter is exposed to fluorescence from a number of targets located roughly a
meter away.  In the actual experiments, the collimator hole was not perfectly aligned and sized.  This allowed some x-
ray absorption events to occur in the silicon substrate.
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measured response of the current I to the absorption of a 5895 eV x ray in the absorber.  The

pulse is exponential, with a sharp rise and a longer decay.  The pulse has a decay time of

240 µs.  The rise time of the pulse is 2 µs due the 100 kHz anti-alliasing filter. (The intrinsic

rise time is approximately 1 µs as computed from equation (4.18)).  In Fig 7.8, the noise is

small compared to the signal.  This noise is what limits the energy resolution of the

microcalorimeter.
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Figure 7.8.  A pulse from the absorption of a 5895 eV pulse in the absorber of microcalorimeter Sunflower 12-1.2.3.
The measurement contains 1024 samples of the output of the SQUID feed back voltage, VFB.  An anti-alias filter was
used to filter out noise at frequencies greater than the sample rate so that high frequency noise would not be aliased to
lower frequencies by the digital sampling.  The feedback voltage is converted to units of current I conducted through
the TES.  The noise that appears on the exponential pulse limits the energy resolution of the microcalorimeter.

The heat capacity of the microcalorimeter is 2.2 pJ/K.  This implies that the absorption of a

5895 eV x ray increases the temperature by ∆T=0.45 mK.  The pulse of Fig. 7.8

corresponds to an increase TES resistance ∆R=34 mΩ.  From this calculation, we can

estimate α.

α ≅ =T
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The value of α’ is estimated from the microcalorimeter model of Chapter 4.  Based on the

model, we estimate α’ to be equal to 100.  This value is obtained by using equation (4.17)

with the values of Table 4.1 and Table 4.2.  The model, with a value of α’=100 produces a

pulse shown in Fig. 4.11 that approximates the measured pulse shown in Fig. 7.8.  This

estimate has an error which is approximately a factor of 2 due to uncertainties in various

parameters in the model.  The model microcalorimeter of Section 4.15 is based on the

“Sunflower 12.1.2.3” microcalorimeter.  (The only difference between the model and the

actual calorimeter is that in the model, the inductance L is chosen to be 10 µH instead of the

actual value which is 0.3 µH. )

Thousands of x rays are recorded.  Each pulse is analyzed and filtered using the program

“Filter Pulses” as described in Section 6.9.  This program is used to generate a scatter plot

of the measured pulse heights and decay times.  Figure 7.9 shows a scatter plot of pulses

resulting from fluorescence of Mn, Fe, Ni, K, Cl, Al and other sources.  (The measured x-

ray lines are labeled in Fig. 7.13.)  Not all of the pulses correspond to absorption events in

the absorber.  Many of the pulses correspond to absorption events in the silicon substrate

below or near to the TES.  The substrate events have shorter decay times.

In a substrate absorption, only a fraction of the x-ray’s energy reaches the microcalorimeter.

Therefore, most of the pulses resulting from the substrate absorption events are only a

fraction of the size of pulses from absorption events in the microcalorimeter.  The fraction

of the x-ray energy that is collected by the microcalorimeter depends on how close the

absorption event in the substrate is to the microcalorimeter.  Most of the energy is collected

from nearby events.  Much less is collected from events farther away.

For substrate events, much of the temperature change measured by the TES is caused by

localized heating in the substrate below the TES.  Heat below the TES quickly propagates

away to the rest of the substrate.  Consequently, the heated part of substrate cools much
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quicker than the microcalorimeter does.  Therefore, the pulses of substrate events have

shorter decay times than the pulses of absorber events.

Events with pulses that have decay times longer than the absorber events were also

observed.  These events are attributed to absorption events in the aluminum wiring layer or

the thermometer.

40

80

120

160

200

240

280

320

0 5 10 15

d
e

c
a

y 
tim

e
 (

µ
s

)

pulse height (V)

substrate
events

Mn Kα

absorber
events

Figure 7.9  A scatter plot of pulse measurements obtained from the “Sunflower 12-1.2.3” microcalorimeter.  The x rays
were generated from a variety of x rays fluorescence sources including Mn, Fe, Ni, K, Cl, Al and other elements.  The
pulse height is the peak feedback voltage VFB multiplied by a gain of 10 from the Ithaco amplifier box (as described in
Chapter 6).  The events with decay times of less than 80 µs correspond to x rays absorbed in the substrate.  The events
with 240 µs decay times are the absorber events.  A correlation between the decay time and pulse height indicates
position dependent response of the microcalorimeter.  The substrate events show such a correlation, but the absorber
events do not.  There is group of events that appear to have larger amplitudes and longer decay times than the absorber
events.  Those events may correspond to x rays absorbed in the TES thermometer.
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The highest energy resolution is obtained by using data from absorption events in the

absorber only.  The other events are discriminated from the absorber events by the

difference in decay times and amplitudes.  We use the program “filter pulses” to remove the

all but the absorber events from the data.

Once the other events are removed, the absorber events are optimally filtered.  (The optimal

filter is described in Appendix B.)  Noise samples, which are recorded immediately

following the acquisition of pulse data, are used to generate the optimal filter.  The optimal

filter also requires a template of the typical pulse shape.  Hundreds of 5895 eV pulses are

averaged to form the template.  After pules heights are measured using the optimal filter

algorithm, a histogram of pulse heights is plotted as described in Section 1.2.  The

histogram plot shows the spectrum of x rays measured by the microcalorimeter.

A histogram of optimally filtered pulses of the “Sunflower 12-1.2.3” microcalorimeter is

shown in Fig. 7.10.  Peaks in the histogram correspond to x rays of various energies.  The

area under each peak is proportional to the number of x rays of the peak energy absorbed in

the absorber.  As indicated in the figure, the microcalorimeter demonstrated a full-width-

half-maximum (FWHM) resolution of 42 eV at 6 keV.

The microcalorimeter also demonstrated excellent linearity.  A plot of pulse height versus x-

ray energy and the residuals are shown in Fig 7.11.

The energy resolution of the microcalorimeter is roughly constant as a function of energy.

The energy resolution of various emission peaks in the spectrum is plotted in Fig. 7.12  The

error bars in Fig. 7.12 represent one standard deviation errors in the measured FWHM of

each of the peaks.
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In calculating the errors, the peaks are modeled as Gaussian distributions with a FWHM of

42 eV.  The standard deviation in the measurement of the FWHM depends on the number

of x-ray measurements in the peak.  The Si Kα peak of Fig. 7.12 corresponds to

approximately 40 measurements.  The standard deviation of the measurement of the

FWHM of that peak is 4.7 eV.  The Mn Kα peak corresponds to 810 measurements, with a

standard deviation in the measurement of the FWHM of 1.0 eV.  The standard deviations do

not include other sources of error.  Additional error occurs when peaks overlap, such as Fe

Κα and Mn Kβ.  The stray counts that form the baseline in the spectrum between the peaks

also contribute some error.
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Figure 7.10  Energy spectrum obtained from the “Sunflower 12-1.2.3” microcalorimeter.  The microcalorimeter
measured x rays from a number of fluorescence sources, including Al, KCl, Mn, and Ni.  The 5895 eV Kα emission
line was measured with 42 FWHM energy resolution.  This is a histogram of the absorber events of Fig. 7.9.
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The spectrum in Fig. 7.10 was obtained by exposing the microcalorimeter to x-ray

fluorescence from a number of different targets as described in Section 6.6.  The

microcalorimeter was exposed to fluorescence targets in the following order: nickel,

manganese, potassium chloride on aluminum, and a target containing some sulfur as an

impurity.  Other x-ray lines were also observed throughout the measurement due to the

fluorescence of the stainless steel vessel that housed the x-ray targets.  Fluorescence from

iron, chromium, and silicon in the stainless steel was observed.  Fluorescence due to
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Figure 7.11  Pulse height versus x-ray energy and the residual to the linear fit.  The “Sunflower 12-1.2.3”
microcalorimeter demonstrated excellent linearity.
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aluminum fixtures in the x-ray source was also observed.

Figure 7.13 shows a plot of pulse amplitudes (in Volts) versus pulse number.  The first 400

pulses contain pulses due to the x-ray fluorescence are from the nickel target.  Pulses

corresponding to Ni Kα and Ni Kβ can are discernible in the plot.  In pulses 400 to 1850,

the Mn Kα and Mn Kβ fluorescence lines from the manganese target are discernible.  In
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Figure 7.12  Energy resolution versus x energy of x-ray absorption events.  The error bars represent one standard
deviation error in the measured Full-Width-Half-Max of the peaks.  The standard deviation is derived from the number
of counts in the each peak.  The peaks are assumed to be Gaussian distributed curves.
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pulses 1850 to 3200, the K Kα, K Kβ, Cl Kα, and Cl Kβ fluorescence lines from the

potassium chloride target were discernible.  In pulses 3200 to 3600, the S Kα fluorescence

line is discernible.  The Fe Kα, Fe Kβ, Cr Kα, Cr Kβ, Si Kα, and Al Kα, fluorescence lines

are discernible throughout the measurement.  These lines are caused by fluorescence in the

stainless steel walls of the x-ray source and in aluminum fixtures.  The plot shown in

Fig 7.13 is very useful because it allows the emissions of the various targets to be separated

from each other.  Using this plot, it is a simple matter to identify the fluorescence lines of

Fig. 7.10.  The energy calibration of Fig. 7.10 is obtained from the identification of these

fluorescence lines.  Another useful feature of the plot in Fig.7.13 is that it demonstrates that

the gain of the microcalorimeter remains constant throughout the experiment.  If the gain of

the microcalorimeter were to change, the vertical bands in the figure would be distorted.

7.2.9  Signal and noise

After measuring the pulses, samples of the noise were recorded.  A 100 kHz anti-alias filter

was used to prevent noise from frequencies higher than the sample frequency affecting the

measurement.  Figure 7.14 contains a plot of the noise of the “Sunflower 12-1.2.3”

microcalorimeter when biased on the phase transition at the chosen operating point.  The

figure also contains a plot of the signal due to a 5895 KeV x-ray for comparison.  The

calculated current noise due to Johnson noise in the TES, Johnson noise in the shunt

resistor, and phonon noise is also plotted in Fig. 7.14.  (The microcalorimeter model of

Chapter 4 is used to compute the current noise due to these noise sources.  The numerical

values of the model parameters are listed in Section 4.15).  The noise equivalent power

(NEP) due to these noise sources is plotted in Fig. 7.15.

Figure 7.14 shows that the signal (and hence the gain) of the microcalorimeter rolls off at

660 Hz (which corresponds to the decay time of the microcalorimeter).  The noise does not

decrease at that frequency as would be expected if the dominate source of noise were
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phonon noise.  If the dominate source of noise were white voltage noise in the

microcalorimeter, the noise would be reduced at low frequencies due to electrothermal

feedback as described in Section 4.10 However, the noise is not decreased at low

frequencies.  Instead, the noise is fairly constant across the entire bandwidth of the

measurement, but increases somewhat at low frequency.

The measured noise source is about 50 pA/Hz1/2 at frequencies between 500 Hz and

20 kHz.  The NEP of this noise increases with increasing frequency, as shown in Fig. 7.15.

The noise cuts off at 100 kHz due to the low-pass filter.  The measured noise is too large

and has the wrong frequency dependence to be accounted for by phonon noise, Johnson

noise, or 10 pA/Hz1/2 amplifier noise.  The dominate source of noise is probably due to

voltage fluctuations in the TES thermometer because the excess noise only appears when

the TES is in the phase transition and the current I through the TES is large.  Because the

measured noise is much larger than the theoretical noise, the microcalorimeter did not

achieve the 5 eV energy resolution computed in Section 4.15.

7.2.10  Position dependence

In the x-ray fluorescence experiment, x rays were absorbed throughout the copper absorber

of the Sunflower 12-1.2.3 microcalorimeter.  Ideally, the response of the microcalorimeter

to the absorption of an x ray of a particular energy should be the same regardless of where

in the absorber the x-ray is absorbed.  However, the response of some microcalorimeters

does vary with position of the absorption event.  This can be caused by position dependent

energy losses from heat leaking out of the calorimeter.  Position dependence can also be

caused by time delays associated with the time its takes for the energy of the event to reach

the thermometer.  Position dependent response of a microcalorimeter has the effect of

causing the FWHM energy resolution to be larger than would be predicted from the

measured signal-to-noise ratio.
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The Sunflower 12-1.2.3 microcalorimeter was designed to minimize position dependence.

The compact design of the microcalorimeter allows heat in the device to diffuse through the

device in about a microsecond.  The heat in the microcalorimeter is evenly distributed much

more quickly than it can leak out to the bath through the thermal coupling, On the time scale

of the pulse measurements, heat is approximately evenly distributed in the calorimeter

regardless of where the x ray is absorbed in the absorber.  In addition, the majority of the

keV x rays penetrate deep into the absorber before being absorbed.  Hence, energy losses

due to ejection of photoelectrons are rare.  Therefore, the response of the microcalorimeter

should be position independent.
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Figure 7.13.  The measurement of fluorescence from nickel, manganese, potassium chloride, and sulfur targets by the
Sunflower 12-1.2.3 microcalorimeter.  The horizontal axis gives the heights of the measured pulses.  The pulses are
ordered sequentially on the vertical axis.  The vertical bands correspond to measured due to fluorescence lines of
various energies.  Each of the target produces a unique set of bands corresponding to the target’s fluorescence
spectrum.  A histogram all the measured pulses is shown in Fig. 7.11.
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The signal-to-noise ratio computed in Figure 7.14 corresponds to an energy resolution of

42 eV, which is the resolution that is measured.  Therefore, the measurements indicate that

the energy resolution is limited by the measured noise, not by position dependent effects in
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Figure 7.14 Signal and noise in the “Sunflower 12-1.2.3” microcalorimeter.  The averaged signal of a 5895 eV pulses
is plotted along with the measured noise.  The calculated noise due to Johnson noise in the TES, phonon noise, and
Johnson noise from the shunt resistor are also plotted.  The measured noise is much larger than the calculated noise.
The empirical data was obtained from samples of noise and pulses.  In these measurements the voltage was recorded at
5 µs intervals.  A 100 kHz low-pass filter was used.  The total signal/noise is 330 which corresponds to the energy
resolution of 42 eV.  This is the actual energy resolution obtained in Fig. 7.10.  Therefore, the energy resolution is not
affected by position dependence in the microcalorimeter.
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the microcalorimeter

Position dependence in the absorber usually affects both the pulse amplitude and the pulse

decay time.  The effect on the amplitude is typically correlated to the affect on the decay

time.  Such a correlation is apparent in the substrate events of Fig. 7.9.  No such correlation

is seen in the absorber events of Fig. 7.9.  Therefore, the shapes of the absorber pulses do

not appear to depend significantly on where in the absorber an x ray is absorbed.
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Figure 7.15.  Noise equivalent power (NEP) of microcalorimeter “SF 12-1-2-3” is plotted along with the signal, and
calculated NEP due to Johnson noise of the TES, Johnson noise of the shunt resistor, and phonon noise.
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7.3  Deviations from optimal behavior

Up to point, we have centered our discussion on the Sunflower 12-1.2.3 microcalorimeter.

With the exception of the extra noise, that detector usually responded as would be expected

by the small signal theory of Chapter 4.  X-ray absorption events resulted in exponential

current pulses, the amplitudes of the pulses were proportional to the energy of the measured

x rays, and the energy resolution corresponds to the measured signal-to-noise ratio.

At this point, deviations from the simple behavior described above will be briefly discussed,

as will lessons about how to correct such problems.  One of the most common deviations

from optimal behavior is an observed variation of the gain of the microcalorimeter with

time.  The gain in the microcalorimeter changes as the equilibrium temperature and current

in the microcalorimeter varies with time.  The change of equilibrium usually arises from a

small drift in the temperature of the ADR stage of the cryostat.  This problems is remedied

by stabilization of the ADR stage of the cryostat to a temperature far below the equilibrium

temperature of the microcalorimeter and by improving the temperature stability of the ADR

stage, so that small variations in the temperature of the ADR stage are not significant.

Some microcalorimeters display peculiar responses to the absorption of x rays.  For instance

measurement of the Sunflower 6-1.2.2 microcalorimeter demonstrated two stable equilibria

for a particular choice of bath temperature Tbath and bias voltage Vth.  Figure 7.16 contains a

plot of pulses measured by the device.  In the plot, the pulses are plotted side by side in the

order that they were measured.  The plot shows that the microcalorimeter often switches

between two stable equilibria as it responded to the absorption of an x ray.  The two

equilibrium have different levels of the baseline.  The calorimeter switches between the two

equilibria during some of the pulses.
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A possible explanation for this behavior is that the thermal conductivity in the TES was too

low.  The normal state electrical resistance of this device is 1.7 Ω.  The calculation of

Section 3.3, suggests that a TES with a normal state resistance greater than 1 Ω may have

poor thermal conductance.  Low thermal conductance allows regions of different

temperatures to form within the TES.  Such independent regions could form numerous

stable equilibria because they allow for many different stable configuration of temperature

within the TES.  If this hypothesis is correct, then such behavior can be eliminated by

increasing the thermal conductance of the TES so that it remains at one temperature

throughout as described in Section 3.3.

Another type of peculiar pulse was displayed by the “Sunflower” 12.1.2.3 microcalorimeter

is shown in Fig. 7.17, which has a normal-state electrical resistance of 400 mΩ.  One of the

switch switchswitch switch

Figure 7.16.  The device SF 6-1.2.2 switches between two stable equilibria during the measurement of 5895 KeV x
rays.
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plotted pulses appears to switch to a lower resistance on time scales much faster than the

thermal time constant of the microcalorimeter.  (In previous measurements of other TES

microcalorimeters, I have often seen the current switch back and forth between two states a

number of times during single pulses.)  It appears that parts of the TES suddenly switch

between the superconducting or normal-metal state during the pulse.  This is possible if

small regions of different temperatures form within the TES during the pulse.  The thermal

time (C/G) of these small regions can be much faster than the response of the

microcalorimeter as a whole.  This hypothesis predicts that such behavior should be

eliminated in TES’s with higher thermal conductance as described in Section 3.3.

These instabilities and the associated peculiar pulses appeared in early measurements of the

Sunflower 12-1.2.3 microcalorimeter.  However, reduction of pickup noise in the system

through removal of ground loops appeared to eliminate the instabilities and peculiar shaped

pulses.  Also, the application of alternating (sinusoid) heater currents with frequencies

greater than 1 kHz created instabilities and switching within the TES during heater

measurements.  The coupling between the heater circuit and the TES bias circuit can cause

fluctuations in the bias voltage across the TES just as pickup does.  Because problems with

instabilities were greatest when there was large radio frequency pickup or high frequency

heater currents, I suspect that high frequency noise in the TES bias voltage is a contributing

factor to the observed instabilities and peculiar pulses.
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7.4  Summary of results

The “Sunflower” 12.1.2.3 microcalorimeter demonstrated good energy resolution (42 eV

FWHM at 6 keV) and excellent linear response to the absorption of x rays.  The device also

showed no evidence of position dependence, as expected.  However, excess noise caused

Figure 7.17  A picture of pulses taken from microcalorimeter Sunflower 12.1.2.3.  At particular bias points our TES
microcalorimeters have demonstrated switching during pulses.  This picture shows several pulses recorded by the
storage mode of our digital oscilloscope.  In this picture, the horizontal direction is the time axis, with each square
representing 250 µs.  The decay time of these pulses is roughly 270 µs.  The vertical axis is proportional to current I
through the thermometer (with each square representing 0.6 µA).  In the largest pulse shown, the current I
exponentially decays from the maximum until about 580 µs after the trigger with a decay time of approximately 270 µs.
Then, the current suddenly drops by 0.6 µA on a time scale less than 20 µs.  Afterwards, the current resumes its
exponential decay on a time scale of approximately 270 µs.  The exponential decay time is the effective thermal time
τeff of the microcalorimeter.  The sudden drop occurs on a much faster time scale.  This rapid change in current may be
due to part of the TES suddenly switching from the resistive normal state to the superconducting state.  It may be
possible for parts of the TES to rapidly switch states if they are in poor thermal contact with the other parts of the
microcalorimeter.
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the resolution to be poorer than the optimal resolution (5 eV) of the calorimeter as

computed in Section 4.15.  The source of the excess noise is most likely fluctuations in the

TES when it is the phase transition.

Several steps can be taken to improve the signal to noise in future TES based x-ray

microcalorimeters.  The signal and noise should be measured for a large number of

operating points in the phase transition of a TES.  Ideally, the measurements would be made

for many points on the transition so that contours of signal, noise, R0, and ′α , could be

plotted versus current I and temperature T (in a plot resembling Fig. 7.6).  From such a

measurement, it could be determined where the signal-to-noise ratio highest.  A better

understanding of the signal and noise would enable us to design microcalorimeters in which

the signal-to-noise ratio is optimized.  For example, the excess noise, which dominates the

noise of Fig. 7.14, only appears when the detector is biased with a large current.  This noise

appears to be caused by fluctuations in the TES as described in Section 7.2.9.  These

fluctuations are reduced to the Johnson noise limit as the electrical current density is

reduced to zero.  It may possible to improve the signal-to-noise ratio if the noise were

reduced by redesigning the TES thermometers so that the current density in the TES is

lower.
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C h a p t e r  8

SUMMARY

8.1  Summary of thesis

Many scientific and industrial applications call for quantum-efficient high-energy-resolution

microcalorimeters for the measurement of x-rays.  The applications driving the development

of these detectors involve the measurement of faint sources of x rays in which few photons

reach the detector.  Microcalorimeters enable the determination of elemental composition of

x-ray sources based on observed x-ray emission spectra in which only hundreds of photons

are collected per emission line.  These microcalorimeters must achieve very high energy

resolution so that emission lines in the measured spectra are sufficiently separated from

each other to make elemental identification possible.  Obtaining energy resolution of several

eV is a goal because many sources contain combinations of elements producing emission

lines spaced only a few eV apart.  Interesting astrophysical applications for these

microcalorimeters include the measurement of composition and temperatures of stellar

atmospheres and diffuse interstellar plasmas.  Other applications of microcalorimeter

technology include x-ray fluorescence (XRF) measurements of industrial or scientific

samples.

We are developing microcalorimeters with transition-edge-sensor (TES) thermometers for

such applications.  A TES microcalorimeter consists of an absorber that is well coupled to a

TES thermometer.  The whole microcalorimeter is weakly coupled a to cold bath that keeps

the microcalorimeter at its operating temperature.  When an x-ray photon is absorbed in the
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absorber, its energy is thermalized, which results in an increase in temperature of the

microcalorimeter.  The heat from the event then leaks out of the microcalorimeter to the

cold bath, which returns the microcalorimeter to equilibrium.  Thus, the response of a

microcalorimeter to the absorption of a photon is a pulse in temperature.  The amplitude of

the temperature pulse is proportional to the energy of the absorbed photon.

A TES thermometer is used to measure the small changes in temperature caused by each

absorption of an x-ray.  A TES thermometer consists of a thin superconducting metal film,

biased on the phase transition between the superconducting and normal-metal states.  In the

phase transition, the resistance increases rapidly with increasing temperature.  Typically, the

TES is voltage biased.  The current conducted through the TES is read out by laboratory

instrumentation.

The heat capacity of x-ray microcalorimeters is kept small so that the temperature of the

microcalorimeter is significantly affected by the absorption of a single x-ray.  Thermal noise

must also be small so that the temperature pulse can be accurately measured.  For these

reasons, x-ray microcalorimeters are operated at low temperature (typically about 100 mK).

The microcalorimeter is fabricated on top of a silicon substrate that suspends a 0.5 µm thick

membrane.  The silicon substrate functions as the cold bath.  Most of the microcalorimeter

lies on the thin membrane, which decouples the microcalorimeter temperature from the bath

temperature.  The absorber of our microcalorimeter consists of 250 µm ×  250µm ×  3 µm

of copper.  The microcalorimeter obtained energy resolution of 42 eV at 6 keV.  The

microcalorimeter demonstrated excellent linearity, and showed no evidence that the

response of the microcalorimeter varied with the location of x-ray absorption in the

absorber.
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The response of a TES thermometer depends both on temperature and on the electrical

current conducted through it.  We developed a microcalorimeter model that extends

previous microcalorimeter theory to include additional current dependent effects.  The

model makes predictions about the effects of various forms of noise.  In addition, the model

helps us to understand what measurements are useful for characterizing TES

microcalorimeters.  Furthermore, the model can be used to aid in the design of new

calorimeters.  We used this model in the development and characterization of our

microcalorimeters.

While the energy resolution we obtained was quite good (twice as good as conventional

semiconductor-based x-ray detectors), the obtained resolution was not as good as expected,

due to excess noise from fluctuations in the TES thermometer.  The energy resolution of

future TES microcalorimeters can be improved by redesigning the calorimeters to minimize

the noise due to these fluctuations.
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A p p e n d i x  A

CHARACTERIZATION OF
TRANSITION-EDGE SENSORS

A.1  Resistance versus temperature measurements

One of the most common measurements that is made of a TES is the measurement of its

resistance R  as a function of device temperature T .  The resistance versus temperature

curve is used as benchmark of the quality of a TES.  Highly sensitive TES thermometers

have transitions that are very narrow in temperature.  The width of the phase transition in

temperature and the parameter α = T R dR dT/ ( / )  are calculated from the resistance versus

temperature measurement.

The measurement of TES resistance R(I,T) depends on the bias current I.  Fig. A.1

illustrates the measurement of resistance versus temperature of a TES, as measured with a

fixed current bias.  Such measurement are made by thermally grounding a TES very well to

the ADR stage of a cryostat, applying a constant current I through the TES, and measuring

the voltage V across the TES.  The temperature of the TES is varied by sweeping the

temperature of the ADR stage of our cryostat.  The temperature of the TES equals the

temperature of ADR stage so long as the current is kept small to minimize Joule heating.  In

this measurement, the width of the transition (segment bc in the plot) in temperature

depends on the current that is applied to the device.  When the bias current is small, the

width of the transition is relatively narrow.  If the current nearly equals the critical current at

zero temperature, I Tc ( )= 0  of the TES, the measured transition width will be much larger.
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If for the same device, the voltage is held constant and the current I  is measured, a very

different resistance versus temperature curve would result, as illustrated in Fig. A.2.  It is

different because the voltage bias traces a different trajectory in current-temperature space

than the current bias does.  In this measurement, the resistance is never zero because of the

constant voltage.  The shape of the resistance versus temperature curve depends on the

voltage applied.

We often measure our transitions using the mixed bias circuit of Fig. 4.2.  An illustration of

a measurement of the same TES with the mixed bias circuit is illustrated in Fig A.3.  This

circuit applies a current bias when the resistance R I T( , ) of the TES is much less than the

shunt resistance Rs , and it applies a voltage bias when the resistance of the TES is much

larger than the resistance of the shunt Rs .  The resulting case is a mixture of the two

previous cases.  If the superconducting segment (ab) is measured with the same current I  in
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Figure A.1.  An illustration of a measurement of resistance versus temperature with the constant bias current I.  The
superconductor to normal-state phase transition is shown in both plots.  The left plot shows contours of resistance as a
function of TES temperature T and electrical current I conducted through the TES.  A constant current trajectory is also
illustrated in the left plot.  The right plot shows the plot of resistance R versus temperature T of the TES as would be
measured along the trajectory in the left plot.  On this trajectory, the current I is fixed, TES temperature T is varied, and
resistance is measured.  The TES superconducts in segment ab.  The TES has the normal resistance RN in segment cd.
The TES is on the phase transition in segment bc.
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the mixed bias case (Fig. A.3) as it is in the current bias case (Fig. A.1), then the measured

width in temperature will be wider in the mixed bias case.

A.2  Current-voltage characteristics

Measurement of current through a TES versus voltage difference across the TES provides

useful information about TES microcalorimeters.  A current versus voltage characteristic

(also called an I-V curve) can be measured by periodically sweeping the voltage across the

TES, while measuring the current, and holding the bath temperature constant.  (The bath

temperature is the temperature of the ADR stage.).

An example of an I-V curve is shown in Fig A.4.  Different branches of the I-V curve

correspond to different phases of the TES.  The superconducting branch is the vertical linear

section in the center of the plot.  The normal metal phase corresponds to the diagonal linear

sections on the left and right sides.  The curved section of the I-V curve, lies on the
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Figure A.2.  An illustration of the measurement of resistance versus temperature with constant voltage bias.  The right
plot shows the plot of resistance R versus temperature T of the TES.  The left plot shows the corresponding trajectory
in current I versus temperature T.  The curves on the I-T plot indicate the phase transition and represent contours of
resistance R.  In this measurement, the voltage across the TES is fixed, TES temperature T is varied, and resistance is
measured.  The TES has the normal resistance RN in segment cd.  The TES is on the phase transition in segment bc.
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superconducting to normal metal phase transition.  When a TES is operated at high power

and a voltage bias is applied, the part of the I-V curve on the phase transition is hyperbolic

in shape if the phase transition is sufficiently narrow in temperature.  This occurs because

electrothermal feedback keeps dissipated power IV approximately constant, so that the

temperature of the TES remains in the phase transition near the critical temperature Tc.

We often use measured IV curves in order to pick bias voltages and bath temperatures at

which to operate our TES microcalorimeters.  If a TES x-ray microcalorimeter is exposed to

x-rays during a measurement of an I-V curve, x-rays cause spikes to appear on the I-V curve

where the detector gain is large.  This method is often used to pick a bias voltage such that

the gain is large.

Recording a series of I-V curves at different bath temperatures, provides even more

information.  Such a family of I-V curves can be used to map the phase transition and help
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Figure A.3.  An illustration of the measurement of the resistance versus temperature of a TES, using the bias circuit of
Fig. 4.2.  This is the kind of measurement of resistance versus temperature that is typically recorded by us.  The right
plot shows the plot of resistance R versus temperature T of the TES.  The left plot shows the corresponding plot in
current I versus temperature T.  The curves on the I-T plot indicate the phase transition and represent contours of
resistance R.  In this measurement, the bias voltage Vb is constant, TES temperature T is varied, and resistance is
measured.  The TES superconducts in segment ab.  The TES has the normal resistance RN in segment cd.  The TES is
on the phase transition in segment bc
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pick a voltage bias and bath temperature such that the detector gain is maximized and the

noise is minimized.

The shape of a measured IV curve depends on the shape of the superconductor to normal

metal phase transition, on the bath temperature of the device, on the amount of self heating

in the microcalorimeter, and on whether the TES is current or voltage biased.

Fig. A.4 illustrates the I-V curve of a TES that is voltage biased with negligible self heating

of the microcalorimeter.  (Self-heating occurs when Joule heating in the thermometer raises

the temperature of the calorimeter above the bath temperature Tbath ).  The bath temperature

Tbath  is regulated to a fixed temperature below the critical temperature Tc  of the TES.

When the Joule heating power in a TES is large enough to elevate the temperature of the

electrons above the bath temperature, the slope dI dV/ of the I-V in the phase transition will

be decreased due to electrothermal feedback.  When the self heating is strong enough to

raise the temperature of the electrons in the TES far above the bath temperature, the slope of

the I-V in the phase transition is negative (as is the dynamic resistance dV dI/ ).  An I-V

characteristic with negative dynamic resistance is illustrated in Fig. A.5.

Electrothermal feedback in a TES microcalorimeter, which is responsible for the negative

dynamic resistance, is negative when the TES is voltage biased.  If the TES is current

biased, there is positive electrothermal feedback that causes the microcalorimeter to be

unstable, causing discontinuities in the part of the I-V curve as illustrated in Fig. A.6
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In our measurements, we typically use the “mixed” bias circuit of Fig. 4.2.  As previously

stated, this circuit provides a current bias when the resistance R I T( , )  of the TES is small

compared to the shunt resistance Rs .  When the resistance of the TES is larger than the

shunt resistance, the TES is voltage biased.  In this case, the only unstable part of the I-V

curve is the part where dynamic resistance is negative and the resistance of the TES R I T( , )

is leas than the Thevenin resistance Rth.  This case is illustrated in Fig. A.7.
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Figure A.4.  An illustration of a I-V curve measured with a voltage bias on the TES and negligible self heating in the
microcalorimeter.  The right plot shows the plot of current I versus voltage V across the TES.  The left plot shows the
corresponding plot in current I versus temperature T.  The curves on the I-T plot indicate the phase transition and
represent contours of resistance R.  In this measurement, the temperature T is constant, voltage V is varied, and
resistance is measured.  The TES superconducts in segment ab.  The TES has the normal resistance RN in segment cd.
The TES is on the phase transition in segment bc.
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Figure A.5  An illustration of the measurement of an I-V curve.  In this case, the TES is voltage biases and there strong
self heating.  This is the classic shape of an I-V curve of a TES operated at high power (compare to Fig 7.4).
Electrothermal feedback in the phase transition causes part of the I-V curve to have negative dynamic resistance.  The
negative dynamic resistance region corresponds to biases where the calorimeter has the largest gain.  When the
thermometer is superconducting, the microcalorimeter temperature T equals the bath temperature Tbath.  At biases where
the TES is resistive, the self heating elevates the temperature of the microcalorimeter above the bath temperature.  The
right plot shows the plot of current I versus voltage V across the TES.  The left plot shows the corresponding trajectory
in current I versus temperature T.  The curves on the I-T plot indicate the phase transition and represent contours of
resistance R.  In this measurement, the bath temperature Tbath is constant, voltage V is varied, and current I is measured.
The TES superconducts in segment ab.  The TES has the normal resistance RN in segment cd.  The TES is on the phase
transition in segment bc.

A.3  The family of current-voltage characteristics

We often measure a sequence of I-V curves of a TES microcalorimeter using the mixed bias

circuit of Fig. 4.2.  Each IV curve in the sequence is measured with the bath temperature

Tbath  (which is the temperature of the ADR stage) set to a different value.  Typically, the

bath temperature is set to temperatures ranging from far below the critical temperature Tc

of the TES to a temperature greater than Tc  such that the TES is a normal metal.
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Figure A.6.  The measurement of the same TES as in Fig A.6, but with a current bias instead of a voltage bias.  With a
current bias, there is a discontinuity in the I-V curve.  Only regions with positive dynamic resistance can be measured.
When the thermometer is superconducting, the microcalorimeter temperature T equals the bath temperature Tbath.  At
biases where the TES is resistive, the self heating elevates the temperature of the microcalorimeter above the bath
temperature.  The right plot shows the current I versus voltage V across the TES.  The left plot shows the corresponding
plot in current I versus temperature T.  The curves on the I-T plot indicate the phase transition and represent contours
of resistance R.  In this measurement, the bath temperature Tbath is constant, current I is varied, and voltage V is
measured.  The TES superconducts in segment ab.  The TES has the normal resistance RN in segment cd.  The segment
bc is not measured because there is no stable equilibrium at bias voltages between point b and point c.

A sequence of several such I-V curves is illustrated in Fig. A.8.  Typically, those IV curves

in which the bath temperature Tbath  is just below the critical temperature Tc  have positive

dynamic resistance;  they have little self heating when the TES in the phase transition

because the current I  through the TES is quite small.  When the bath temperature is set to

be far below the critical temperature, the current in the TES can be large on the transition.

Hence, those I-V curves correspond to low bath temperatures tend to have larger self

heating, and negative dynamic resistance regions.  IV curves measured with the bath

temperature set above the critical temperature are strait lines corresponding the normal

metal resistance of the TES.
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Figure A.7  An illustration of the measurement of an I-V curve with the bias circuit of Fig 4.2.  The Thevenin
resistance Rth is much less than the normal resistance RN.  When the resistance R of the TES is less then the resistance
Rth, the TES is approximately current biased.  When the resistance R of the TES is more then the resistance Rth, the TES
is approximately voltage biased.  When the thermometer is superconducting, the microcalorimeter temperature T equals
the bath temperature Tbath.  At biases where the TES is resistive, the self heating elevates the temperature of the
microcalorimeter above the bath temperature.  The right plot shows the current I versus voltage V across the TES.  The
left plot shows the corresponding trajectory in current I versus temperature T.  The curves on the I-T plot indicate the
phase transition and represent contours of resistance R.  In this measurement, the bath temperature Tbath is constant, bias
voltage Vb is varied, and voltage I is measured.  The TES superconducts in segment ab.  The TES has the normal
resistance RN in segment cd.  In segment de, the TES has negative dynamic resistance and is approximately voltage
biased.  The segment be is not measured because there is no stable equilibrium at bias voltages between point b and
point e (where R<Rth).
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Figure A.8.  An illustration of the measurement of a family of I-V characteristics.  The I-V characteristics are illustrated
in the plot on the right.  The plot on the left shows the corresponding trajectories in current I and temperature T.
Contours of resistance of the TES are also plotted in the left diagram.  Each characteristic corresponds to a particular
bath temperature.



198

A p p e n d i x  B

THE OPTIMAL FILTER

B.1  The optimal filter algorithm

An absorption of an x-ray in a microcalorimeter produces a pulse in the temperature T of the

microcalorimeter as described in Section 1.1.  A resistive thermometer, such a TES,

converts temperature variations in the TES to an electronic signal.

The measurements of pulses from a microcalorimeter contain both signal and noise.

Ideally, the electronic signal is a pulse that whose amplitude is proportional to the energy of

the absorbed x ray.  The noise is caused by thermodynamic fluctuations in the

microcalorimeter, fluctuations in laboratory electronics, and other sources such as radio

frequency pickup.  The noise limits the energy resolution obtainable from the

measurements.  The effects of noise on the measurements is minimized by filtering out

frequencies from the measurements which have a poor signal-to-noise ratio.

The optimal filter [1] is designed to measure the amplitude of a signal in the presence of

random noise.  This filter is only truly optimal if the noise is only a function of frequency

(and not time dependent), and the noise must be uncorrelated between frequencies.

The derivation of the optimal filter is as follows.  The jth x ray is absorbed a

microcalorimeter at time t t j= .  The energy of the absorbed x ray is E j  The absorption
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event generates a signal S tj ( ) .  All of the signals are assumed to be pulses of the same

shape.  Therefore, signal S tj ( )  can be expressed as

S t A s t tj j j( ) ( )= − (B.1)

where s t( )  is a function that describes the shape of a typical pulse and Aj  is the amplitude

of the jth pulse.  The amplitude Aj  is proportional to the energy E j .

The measurement of a single pulse consists of a sequence of x samples periodically

recorded at time intervals ∆t .  A measurement M tj ( )  of the jth signal also contains noise

N tj ( ) .

M t S t N tj j j( ) ( ) ( )= + (B.2)

Note that the terms of equation (B.2) are defined at the discrete time intervals

t ∈{tj, tj+ ∆t ,... ..., tj+(x-1) ∆t } . (B.3)

We obtain an estimate of the energy E j  of an x ray absorption from the measurement

M tj ( ) .  The discrete Fourier transform of the measurement is

M f A s f e N fj j
i ft

j
j( ) ( ) ( )= +− 2π

, (B.4)

where s f( )  and N fj ( )  are Fourier transforms of the shape function s t( )  and the noise

N tj ( ) .
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The measurement M fj ( )  is defined only for discrete frequencies

{ }f f f f= 0 2, , , ... , max∆ ∆ , where ∆ ∆f x T= 2 /  and f x fmax /= ∆ 2  is the Nyquist

frequency.

The noise N j ( )ω  is assumed to be Gaussian distributed and uncorrelated between

frequencies.  The magnitude of the of noise N j ( )ω  depends on the bandwidth b over which

the noise is measured, which is the bandwidth of the analog filters used in conjunction with

the digitizer.  The noise increases with the square root bandwidth because noise at differing

frequencies is not correlated.  The best signal to noise is obtained when a low-pass filter is

used to filter noise at frequencies greater than the Nyquist frequency so that b f= max .

We fit the function A s fj ( )  to the Fourier transform of the jth measurement M fj ( )  using

the linear least squares method.  The likelihood L of an estimate of Aj  and t j  being correct

is given by the likelihood function:

( )
L

M f A s f e

f

j j
i ft

f

j

∝ −
−



















−

∑exp
( ) ( )

( )

2
2

2
2

π

σ
. (B.5)

In the equation (B.5), σ ( )f  is the standard deviation of the noise at frequency f:

σ ( ) ( ) ( )f N f N fj j= −2 2
. (B.6)

The most likely value of Aj  occurs when ∂ ∂L Aj/ = 0 .  The most likely value is
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A
n

M f q f e fj
i ft

f

j= ∑1 2( ) *( )
π ∆ , (B.7)

where the normalization function n is

n
s f

f
f

f

= ∑ ( )

( )σ

2

∆ , (B.8)

and the function q(f) is

( )
q f

s f

f
( )

( )

( )
=

σ 2
. (B.9)

Equation (B.7) is rewritten as a convolution in the time domain:

A t

M t q t t

s t q t tj j

j
t

j
t

( )

( ) ( )

( ) ( )
=

−

−

∑
∑

, (B.10)

where q(t) is inverse the Fourier transform of q(f).  The function q(t) is known as the

optimal filter.  The most likely value of t j  occurs when A tj j( )  is maximized with respect

to t j .

The standard deviation of the likelihood function L is

σ
σA

max

=










=

−

∑ s f

ff

f
( )

( )

/
2

0

1 2

(B.11)
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The energy of an event E j  is proportional to the amplitude Aj , where the constant of

proportionality is dE dA/ .  Therefore, the standard deviation in terms of the energy

measurements E j  is

σ
σE

f

f

f

f
dE

dA

s f

f

f

f
=













=












=

−

=

−

∑ ∑( )

( ) ( )

/ /
2

0

1 2

2
0

1 2

4max max

NEP

∆
, (B.12)

where the noise equivalent power (NEP) is

NEP( )
( )

( )
f

dE

dA

f

s f
f= 2

σ ∆ . (B.13)

The interval ∆f  can not be made arbitrarily small because it is limited by the frequency

resolution of laboratory equipment.  Nevertheless, it is assumed that ∆f  is sufficiently

small that equation (B.11) can be expressed as an integral.

∆E
df

f
FWHM E

NEP(
= =















∞
−

∫2 35 2 35
4

20

1 2

. .
)

/

σ . (B.14)

Equation (B.14) is used in calculating the energy resolution of a microcalorimeter given the

NEP due to all the sources of noise.  In Chapter 4, we use this equation to determine how

various forms of noise affect the energy resolution of a microcalorimeter.

The optimal filer algorithm is incorporated into our data analysis software as described in

Chapter 6.  The software performs the optimal filtering by convolving each of the

measurements M tj ( )  with a computed optimal filter q(t).  The maximum of the
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convolution is the amplitude of the pulse Aj .  The maximum occurs at the time t j  of the

jth event.  A histogram is computed from the values of Aj .  When the histogram is

calibrated into units of energy, the result is a spectrum similar to Fig. 1.4.  The width

∆EFWHM  of the peaks in the spectrum is given by equation (B.14).

[1]  A. E. Szymkowiak, R. L. Kelley, S. H. Moseley et al., “Signal processing for

microcalorimeters,” Journal of Low Temperature Physics 93 (3-4), 281-5 (1993).
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